Answer:
Time taken = 8.25 second
Explanation:
Given:
Force = 4000 N
Force = ma
4,000 = (1100)(a)
Acceleration = 3.6363 m/s²
v = u + at
0 = 30 + (3.6363)t
Time taken = 8.25 second
Answer:
In an elastic collision:
- There is no external net force acting. Thus, Momentum before and after collision is equal. Momentum remains conserved.
- Total energy always remains conserved as energy cannot be created nor destroyed. It can change from one form to another.
- There is no lost due to friction in elastic collision. So the kinetic energy is also conserved.
- Velocities may change after collision. If the masses are equal, the velocities interchange.
When one object is stationary:
Final velocity of object 1:
v₁ = (m₁ - m₂)u₁/(m₁ +m₂)
Final velocity of object 2:
v₂ = (2 m₁ u₁)/(m₁+m₂) =
- Objects do not stick together in elastic collision. They stick together in inelastic collision.
- One object may be stationary before the elastic collision.
Thus, conditions for an elastic collision:
- Energy is conserved.
- Velocities may change.
- Momentum is conserved.
- Kinetic energy is conserved.
- One object may be stationary before the elastic collision.
Answer:
Explanation:
Given that,
Mass of the thin hoop
M = 2kg
Radius of the hoop
R = 0.6m
Moment of inertial of a hoop is
I = MR²
I = 2 × 0.6²
I = 0.72 kgm²
Period of a physical pendulum of small amplitude is given by
T = 2π √(I / Mgd)
Where,
T is the period in seconds
I is the moment of inertia in kgm²
I = 0.72 kgm²
M is the mass of the hoop
M = 2kg
g is the acceleration due to gravity
g = 9.8m/s²
d is the distance from rotational axis to center of of gravity
Therefore, d = r = 0.6m
Then, applying the formula
T = 2π √ (I / MgR)
T = 2π √ (0.72 / (2 × 9.8× 0.6)
T = 2π √ ( 0.72 / 11.76)
T = 2π √0.06122
T = 2π × 0.2474
T = 1.5547 seconds
T ≈ 1.55 seconds to 2d•p
Then, the period of oscillation is 1.55seconds