1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldi70 [24.7K]
3 years ago
10

You and your friends are having a discussion about weight. He/she claims that he/she weighs less on the 100th floor of a buildin

g than he/she does on the ground floor. Is he/she correct? Support your answer with evidence.
Physics
2 answers:
m_a_m_a [10]3 years ago
6 0

Answer:

Explanation:

Yes she is correct.

Using the formula:

Gravitational force, Fg = GM1M2/R^2

Where,

G = gravitational constant

M1 = mass of the Earth

M2 = mass of human

R = distance between the 100th floor and the center of the earth

Weight, which really means gravitational force, is proportional to the product of the masses of two objects acting on each other, in this case the giant earth and the tiny you, so the difference will be almost immeasurable.

Viktor [21]3 years ago
4 0

Answer:

if the weight theoretically decreases at this height, but in a fraction of 10⁻⁵, which is not appreciable in any scale, therefore, the reading of the scale in the two places is the same.

Explanation:

The weight of a person in the force with which the Earth attracts the person, therefore can be calculated using the law of universal attraction

          F = G m M / r²

Where m is the mass of the person, M the masses of the earth

Let's call the person's weight at ground level as Wo and suppose the distance to the center of the Earth is Re

            W₀ = G m M / Re²

In the calculation of the weight of the person on the 100th floor the only thing that changes is the distance

          r = Re + 100 r₀

Where r₀ is the distance between the floors, which is approximately 2.5 m, so the distance is

         r = Re + 250

We substitute

     W = G m M / r²

      W = G m M / (Re + 250)²

The value of Re is 6.37 10⁶ m, so we can take it out as a factor and perform a serial expansion of the remaining fraction

      W = G m M / Re² (1+ 250 / Re)²

      (1 + 250 / Re)⁻² = 1 + (-2) 250 / Re + (-2 (-2-1)) / 2 (250 / Re)² +….

The value of the expression is

      (1 + 250 / Re)⁻² = 1 -2 250 / 6.37 10⁶ -30 (250 / 6.37)² 10⁻¹² + ...

We can see that the quadratic term is very small, which is why we despise it, we substitute in the weight equation

      W = G m M / Re² (1 - 78.5 10⁻⁶)

Remains

     W = Wo (1 - 7.85  10⁻⁵)

We can see that if the weight theoretically decreases at this height, but in a fraction of 10⁻⁵, which is not appreciable in any scale, therefore, the reading of the scale in the two places is the same.

You might be interested in
On Mars a rock falls an unknown vertical distance from a resting position and lands in a crater. If it takes the rock 2.5 second
astra-53 [7]

The Answer To This Question Is B

Hope It Helped

8 0
3 years ago
What forces are those that act on an object causing the net force to be something other than zero?
Arisa [49]
Gravity is all ways pulling down and the normal force acting on top of the object and for it to have to push or pull to the object
3 0
3 years ago
An airtight box has a removable lid of area 1.00 10-2 m2 and negligible weight. the box is taken up a mountain where the air pre
gladu [14]
<span>9.50x10^2 newtons A pascal is defined as 1 newton per square meter. So let's multiply the pressure by the surface area of the box lid. F = 1.00x10^-2 m^2 * 9.50x10^4 N/m^2 = 9.50x10^2 N So it will take 9.50x10^2 newtons of force to remove the lid from the box.</span>
8 0
3 years ago
The magnitude of the weight of a 3.0 kg object on the surface of the earth is 29 N. True False
madreJ [45]
True

In fact, the weight of an object on the surface of the Earth is given by:
F=mg
where m is the mass of the object and g=9.81 m/s^2 is the gravitational acceleration on Earth's surface. If we use the mass of the object, m=3.0 kg, we find
F=mg=(3.0 kg)(9.81 m/s^2)=29 N
8 0
3 years ago
Determine the magnitude of the resultant force acting on a 1.5 −kg particle at the instant t=2 s, if the particle is moving alon
Phoenix [80]

Answer:

F = 63N

Explanation:

M= 1.5kg , t= 2s, r = (2t + 10)m and

Θ = (1.5t² - 6t).

magnitude of the resultant force acting on 1.5kg = ?

Force acting on the mass =

∑Fr =MAr

Fr = m(∇r² - rθ²) ..........equation (i)

∑Fθ = MAθ = M(d²θ/dr + 2dθ/dr) ......... equation (ii)

The horizontal path is defined as

r = (2t + 10)

dr/dt = 2, d²r/dt² = 0

Angle Θ is defined by

θ = (1.5t² - 6t)

dθ/dt = 3t, d²θ/dt² = 3

at t = 2

r = (2t + 10) = (2*(2) +10) = 14

but dr/dt = 2m/s and d²r/dt² = 0m/s

θ = (1.5(2)² - 6(2) ) = -6rads

dθ/dt =3(2) - 6 = 0rads

d²θ/dt = 3rad/s²

substituting equation i into equation ii,

Fr = M(d²r/dt² + rdθ/dt) = 1.5 (0-0)

∑F = m[rd²θ/dt² + 2dr/dt * dθ/dt]

∑F = 1.5(14*3+0) = 63N

F = √(Fr² +FΘ²) = √(0² + 63²) = 63N

7 0
3 years ago
Other questions:
  • charge, q1 =5.00μC, is at the origin, a second charge, q2= -3μC, is on the x-axis 0.800m from the origin. find the electric fiel
    12·1 answer
  • Which four equations can be used to solve for acceleration
    7·1 answer
  • 5. An infinite wire is 3.00 cm away from and parallel to a 10 cm long wire, and each has a current of 2.50 A in the same directi
    10·1 answer
  • Un cuerpo gira con movimiento circular uniforme un ángulo total de 1080° en 20
    13·1 answer
  • AAAAAAAAAH
    10·2 answers
  • What is the name of the phenomenon that causes observed light from a star to change its wavelength?
    15·1 answer
  • Pain... physical, mental, emotional?
    15·1 answer
  • A 16 Ω resistor and a 6 Ω resistor are connected in series to an ideal 6 V battery.
    12·2 answers
  • A 5.2 kg cat and a 2.5 kg bowl of tuna fish are at opposite ends of the 4.0-m-long seesaw. How far to the left of the pivot must
    11·1 answer
  • During an isothermal process, 10 j of heat is removed from an ideal gas. What is the work done by the gas in the process?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!