OF COURSE !
The gravitational force between two objects doesn't ONLY depend on the product of their masses. It also depends on the distance between them.
I'm not even going to work out the numbers for my example. I'm just going to state without proof that at the top of the 2nd frame, the gravitational force between you and your bowling ball is greater than the gravitational force between you and the whole darn Andromeda galaxy ! My reasoning is based on the fact that your bowling ball is maybe 1 foot from your center of mass, whereas the Andromeda galaxy is more like 2.5 million light years from it. That right there is going to give your bowling ball a big advantage when it comes to gravity !
Answer:
Approximately
.
Explanation:
The refractive index of the air
is approximately
.
Let
denote the refractive index of the glass block, and let
denote the angle of refraction in the glass. Let
denote the angle at which the light enters the glass block from the air.
By Snell's Law:
.
Rearrange the Snell's Law equation to obtain:
.
Hence:
.
In other words, the angle of refraction in the glass would be approximately
.
Answer:
f=896Hz
Explanation:
Given data
Vs(speed of the ambulance)={(104 km/h)*(1000m*(1 h/3600)}=28.9m/s
f(frequency of the ambulance siren)=821 Hz
v(speed of sound)=345 m/s
Vo(speed of the observer)=0 m/s
To find
f(The ambulance is approaching the person)
Solution
From Doppler effect

As the ambulance approaches the we assign a positive sign for speed "vs" of the ambulance
So

Substitute the values from given data

The transformation is kinetic energy