<em>The correct option is </em><em>A</em>. The information we know about the known exoplanets is estimates of orbits and masses.
<h3>What is exoplanets?</h3>
An exoplanet or extrasolar planet is a planet outside the Solar System.
In other words, exoplanet is any planet beyond our solar system.
<h3>Characteristics of exoplanets</h3>
exoplanets are known for the following characteristics;
- they are usually hot
- they can orbit their stars so tightly that a “year” lasts only a few days
- they can orbit two suns at once
Thus, the information we know about the known exoplanets is estimates of orbits and masses.
Learn more about exoplanets here: brainly.com/question/1514493
#SPJ1
They do the method 3 times to be sure. Because if you do it once, that could mean anything. If you do it twice, it may or may not have the same result. If you do it 3 times and it matches one of the previous answers, then it's likely that it's correct.
Answer:
The actual angle is 30°
Explanation:
<h2>Equation of projectile:</h2><h2>y axis:</h2>

the velocity is Zero when the projectile reach in the maximum altitude:

When the time is vo/g the projectile are in the middle of the range.
<h2>x axis:</h2>

R=Range


**sin(2A)=2sin(A)cos(A)
<h2>The maximum range occurs when A=45°
(because sin(90°)=1)</h2><h2>The actual range R'=(2/√3)R:</h2>
Let B the actual angle of projectile

2B=60°
B=30°
The correct answer is - A. Plants store solar energy; the plants die; the plants are compressed; solar energy is released;
The plants use the solar energy for their functioning, thus they are one of the biggest natural storage of it. The plants also use the CO2 for the process of photosynthesis that is driven by the solar energy. When the plants die, the things inside them are stored in them, and if they are quickly covered they will remain stored and not get back into the atmosphere. The plants than are compressed, and over time that leads to a change in their composition. After millions of years had passed, the solar energy and CO2 had turned into coal. The coal is heavily used by the humans in the past few centuries, and with its burning the solar energy and the CO2 are released back into the atmosphere from which they came millions of years ago.
Answer:
x_{cm} = 4.644 10⁶ m
Explanation:
The center of mass is given by the equation
= 1 /
∑
Where M_{total} is the total masses of the system,
is the distance between the particles and
is the masses of each body
Let's apply this equation to our problem
M = Me + m
M = 5.98 10²⁴ + 7.36 10²²
M = 605.36 10²² kg
Let's locate a reference system located in the center of the Earth
Let's calculate
x_{cm} = 1 / 605.36 10²² [Me 0 + 7.36 10²² 3.82 10⁸]
x_{cm} = 4.644 10⁶ m