Answer:
Explanation:
a) F = m(g + a) = 50(10 + 0.0) = 500 N
b) F = m(g + a) = 50(10 + 2.0) = 600 N
c) F = m(g + a) = 50(10 - 2.0) = 400 N
d) F = m(g + a) = 50(0.0 + 0.0) = 0.00 N
Answer:
1,700feet
Explanation:
If an object in free fall travels a distance s that is directly proportional to the square of the time t, this can be represented mathematically as;
S = kt²where;
k is the proportionality constant
K = s/t²
s1/t1²= s2/t2²= Sn/tn²= k for values of the distance and time. Using the formula
s1/t1² = s2/t2² where;
s1 is the falling distance in time t1 s2 is the falling distance in time t2
Given s1 = 1088feet, t1 = 8secs, s2 = ? t2 = 10secs
Substituting this value in the formula to get s2, we have;
1088/8²= s2/10²
64s2= 108800
s2 = 108800/64
s2 = 1,700feet
This means the object will fall a distance of 1,700feet in 10seconds
Answer:
there is the increase the temperature of cold body and decrease the temperature of hot body
The answer should be B - lasts longer.
Answer:
The value of acceleration that accomplishes this is 8.61 ft/s² .
Explanation:
Given;
maximum distance to be traveled by the car when the brake is applied, d = 450 ft
initial velocity of the car, u = 60 mph = (1.467 x 60) = 88.02 ft/s
final velocity of the car when it stops, v = 0
Apply the following kinematic equation to solve for the deceleration of the car.
v² = u² + 2as
0 = 88.02² + (2 x 450)a
-900a = 7747.5204
a = -7747.5204 / 900
a = -8.61 ft/s²
|a| = 8.61 ft/s²
Therefore, the value of acceleration that accomplishes this is 8.61 ft/s² .