Answer:
In the parallel plate capacitor
The capacitance will decrease between the plates.
The voltage will increase between the plates.
Explanation:
When the distance between the plates increase, then the voltage also increases as it varies with the separation of plates. However the capacitance will decrease upon increasing the distance. As the capacitance depends upon the electric field between the plates. Field is stronger when the plates are closer so capacitance increase. Field will be weaker upon increasing the distance and hence the capacitance decreases.
Let us use the formula for Newton's Second Law of Motion:
Net force = Mass*Acceleration
Net force = Applied Force - μ*Normal Force
where μ is the coefficient of kinetic friction
Normal Force = Force due to gravity = mass*gravity
Normal Force = (210 kg)(9.81 m/s²) =<em> 2,060.1 N</em>
Then,
Net force = 4100 - 0.38*2060.1 = 3317.162 N
3317.162 N = (210 kg)(a)
Solving for acceleration,
<em>a = 15.796 m/s²</em>
Answer:
V₁ = 5.6 m/s
V₂ = 7.2 m/s
V₃ = 8.8 m/s
Explanation:
Average velocity: Average velocity can be defined as the ratio of the total displacement to the total time taken. The S.I unit of Average velocity is m/s.
For the first 2 s,
V₁ = Δd₁/t
Where V₁ = Average velocity for the first 2 s
Where Δd₁= distance, t = time
Δd₁ = 25.6-14.4 = 11.2 m t = 2 s
V₁ = 11.2/2
V₁ = 5.6 m/s
For the second 2 s,
V₂ =Δd₂/t
Where V₂ = average velocity for the second 2 s.
Δd₂= 40-25.6 = 14.4 m, t= 2 s
V₂ = 14.4/2
V₂ = 7.2 m/s
For the last 2 seconds,
V₃ =Δd₃/t
Where V₃ = average velocity for the last 2 s
where Δd₃ = 57.6- 40 = 17.6 m, t = 2 s
V₃ = 17.6/2
V₃ = 8.8 m/s.