1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DanielleElmas [232]
3 years ago
6

_______ occurs when a body’s molecular wavelength sends vibrations to another body, resulting in the production of another sound

wave.
Correct Answer
a) Resonance

b) Focusing
c) Refraction

Incorrect Response
d) Interference
Physics
2 answers:
Vikki [24]3 years ago
8 0
The answer is Resonance. Think of the bass on a speaker and if you place a glass of water onto a table or flat surface, it will start to vibrate/ shake because of the musics beats bass.
son4ous [18]3 years ago
8 0
Resonance is the answer.
You might be interested in
A spring stretches 0.150 m when a 0.30 kg mass is hung from it. The spring is then stretched an additional 0.100 m from this equ
DochEvi [55]

Answer:

a)  k=19.6N/m

b)  V_m=0.81m/s

c)  a_m=6.561m/s^2

d)  K.E=0.096J

e)  T=0.78sec &F=1.29sec

f)   mx'' + kx' =0

Explanation:

From the question we are told that:

Stretch Length L=0.150m

Mass m=0.30kg

Total stretch lengthL_t=0.150+0.100=>0.25

a)

Generally the equation for Force F on the spring is mathematically given by

F=-km\\\\k=F/m\\\\k=\frac{m*g}{x}\\\\k=\frac{0.30*9.8}{0.15}

k=19.6N/m

b)Generally the equation for Max Velocity of Mass on the spring is mathematically given by

V_m=A\omega

Where

A=Amplitude

A=0.100m

And

\omega=angulat Velocity\\\\\omega=\sqrt{\frac{k}{m}}\\\\\omega=\sqrt{\frac{19.6}{0.3}}\\\\\omega=8.1rad/s

Therefore

V_m=A\omega\\\\V_m=8.1*0.1

V_m=0.81m/s

c)

Generally the equation for Max Acceleration of Mass on the spring is mathematically given by

a_m=\omega^2A

a_m=8.1^2*0.1

a_m=6.561m/s^2

d)

Generally the equation for Total mechanical energy of Mass on the spring is mathematically given by

K.E=\frac{1}{2}mv^2

K.E=\frac{1}{2}*0.3*0.8^2

K.E=0.096J

e)

Generally the equation for  the period T is mathematically given by

\omega=\frac{2\pi}{T}

T=\frac{2*3.142}{8.1}

T=0.78sec

Generally the equation for  the Frequency is mathematically given by

F=\frac{1}{T}

F=1.29sec

f)

Generally the Equation of time-dependent vertical position of the mass is mathematically given by

mx'' + kx' =0

Where

'= signify order of differentiation

7 0
3 years ago
Why do the passengers in high-altitude jet planes feel the sensation of weight while passengers in an orbiting space vehicle, su
kykrilka [37]

Passengers in an aircraft are subject to the Normal and Gravity Force acting on them at a low 'orbit', so tiny that it can be many times compared to the same surface of the earth when speaking in general terms.

In a high orbit space vehicle or in the same space, said force decreases considerably or simply disappears, generating the sensation of weightlessness.

Remember that the Force of Gravity is given under the principle

F_g = \frac{GMm}{r^2}

Where,

G = Gravitational Universal constant

M = Mass of the planet

m = mass of the object

r = Distance from center of the planet

When the radius grows considerably the gravitational force begins to decrease.

7 0
2 years ago
Two loudspeakers are placed side by side and driven by the same source at 500 Hz. A listener is positioned in front of the two s
Oliga [24]

Answer:

0.68 m

Explanation:

We know that the speed of sound in air is a product of frequency and wavelength. Taking speed of sound in air as 340 m/s

V=frequency*wavelength

Then wavelength is given by 350/500=0.68 m

Therefore, to repeat constructive interference at the listener's ear, a distance of 0.68 m is needed

4 0
3 years ago
transmission electron microscopes that use high-energy electrons accelerated over a range from 40.0 to 100 kv are employed in ma
Gekata [30.6K]

The spatial limitations in Picometer for the given range of electrons would be around 50 picometers.

What is a transmission electron microscope?

A transmission electron microscope (TEM) is a type of microscope that uses a beam of high-energy electrons to produce detailed images of the structure of materials at the atomic or molecular scale. TEMs work by passing a focused beam of electrons through a thin sample and collecting the transmitted electrons on a fluorescent screen or an electronic detector. The interaction of the sample with the electrons results in the formation of an image that can be magnified and displayed on a computer monitor. TEMs are widely used in the fields of materials science, biology, and nanotechnology and can provide information about the structure, composition, and properties of materials with a high level and resolution.

According to the problem:

The spatial resolution of a transmission electron microscope (TEM) is determined by the size of the electron probe, which is directly related to the energy of the electrons. The higher the energy of the electrons is, the smaller the size of the probe is and the higher the spatial resolution.

At the lower end of the energy range of 40.0 kV, the spatial resolution of the TEM would be on the order of hundreds of nanometers. At the higher end of the range (100 kV), the spatial resolution would be on the order of tens of nanometers.

In general, TEMs with electron energy in the range of 40-100 kV are capable of resolving details down to around 50 picometers (pm). However, the actual spatial resolution will depend on various factors, such as the quality of the electron optics, the stability of the electron beam, and the sample preparation.

It's worth noting that TEMs with even higher electron energies (up to several hundred kV) are available, which can achieve spatial resolutions down to the sub-angstrom level (less than 0.1 pm). However, these instruments are much more expensive and complex to operate than TEMs with lower electron energies.

To know more about de broglie wavelength, visit:

brainly.com/question/17295250

#SPJ4

7 0
10 months ago
A 0.15 g honeybee acquires a charge of 22 pC while flying. The electric field near the surface of the earth is typically 100 N/C
Rus_ich [418]

Answer:

1.50\ *10^{-6} }

Explanation:

Given

e=100 N/C

M=0.15 g

q=\ 22\  pC\\=\ 22\ *10^{-2}

The  ratio of the electric force on the bee to the bee's weight can be determined by the following formula

\frac{fe}{M*9.81}

\frac{22*10^{-12\ *\ 100} }{0.15*\ 10^{-3} *\ 9.81}

=\ 1.50\ *10^{-6}

4 0
3 years ago
Other questions:
  • Photons are also known as beta particles. (true or false)
    7·1 answer
  • table has several directional compasses, several lengths of wire, an iron nail, a battery, an ammeter, a light bulb, a permanent
    12·1 answer
  • Please help me on this
    9·1 answer
  • A hula hoop is rolling along the ground with a translational speed of 26 ft/s. It rolls up a hill that is 16 ft high. Determine
    14·1 answer
  • Who knows the egg drop challenge
    13·1 answer
  • Water boils at 212°F. Which temperature is an equivalent temperature?
    15·2 answers
  • You are given three pieces of wire that have different shapes (dimensions). You connect each piece of wire separately to a batte
    9·1 answer
  • a group of students working in a high school chemistry lab believe they have discovered a new element! how exciting! upon furthe
    11·1 answer
  • Which property of the wave makes it-(C)
    9·2 answers
  • What do scientists use to study the patterns and impacts of climate change over time?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!