Answer:
λ = 482.05 nm
Explanation:
The diffraction phenomenon and the diffraction grating is described by the expression
d sin θ = m λ
where d is the distance between two consecutive slits, λ the wavelength and m an integer representing the order of diffraction
in this case they indicate the distance between slits, the angle and the order of diffraction
λ =
d sin θ / m
let's calculate
λ = 1.00 10⁻⁶ sin 74.6 / 2
λ = 4.82048 10⁻⁷ m
Let's reduce to nm
λ = 4.82048 10⁻⁷ m (10⁹ nm / 1 m)
λ = 482.05 nm
Answer:
q = 3.6 10⁵ C
Explanation:
To solve this exercise, let's use one of the consequences of Gauss's law, that all the charge on a body can be considered at its center, therefore we calculate the electric field on the surface of a sphere with the radius of the Earth
r = 6 , 37 106 m
E = k q / r²
q = E r² / k
q =
q = 4.5 10⁵ C
Now let's calculate the charge on the planet with E = 222 N / c and radius
r = 0.6 r_ Earth
r = 0.6 6.37 10⁶ = 3.822 10⁶ m
E = k q / r²
q = E r² / k
q =
q = 3.6 10⁵ C
Answer:
If conditions are just right, you can see Polaris from just south of the equator. Although Polaris is also known as the North Star, it doesn't lie precisely above Earth's North Pole. If it did, Polaris would have a declination of exactly 90 degree.
Explanation:
To Make I the subject you need to get it by itself. To do this divide both sides by V and t:
I = E/Vt
Before Copernicus most people were thinking that the Earth is at center of universe. In 1609 Galileo observed sky through his home made telescope.
He found 4 moons orbiting Jupiter..It was a proof that bodies are orbiting other planets and not earth alone. <span>He found the crescent shape of Venus through his telescope and this could happen only if Sun is at center.</span>