Answer:

Explanation:
In order to calculate the angular momentum of the particle you use the following formula:
(1)
r is the position vector respect to the point (0 , 5.0), that is:
r = 0m i + 5.0m j (2)
p is the linear momentum vector and it is given by:
(3)
the direction of p comes from the fat that the particle is moving along the i + j direction.
Then, you use the results of (2) and (3) in the equation (1) and solve for L:

The angular momentum is -30 kgm^2/s ^k
Answer:
<em>The average speed of the train is 45 km/h</em>
Explanation:
<u>Speed</u>
It's defined as the distance (d) per unit of time (t) traveled by an object. The formula is:

Let's call x the total distance covered by the train. It covered d1=1/3x with a speed of v1=25 km/h. The time taken is calculated solving for t:



Now the rest of the distance:
d2 = x - 1/3x = 2/3x
Was covered at v2=75 km/h. Thus the time taken is:



The total time is:



Simplifying:

The average speed is the total distance divided by the total time:

Simplifying:

The average speed of the train is 45 km/h
Answer:
a) 32.58 m/s²
b) 161.84 m/s
Explanation:
Initial velocity = u = 0
Final velocity = v = 145 m/s
Time taken = t = 4.45 s
s = Displacement of dragster = 402 m
a = Acceleration


The final velocity is greater than the velocity used to find the average acceleration due to the gear changes. The first gear in a dragster has the most amount of toque which means the acceleration will be maximum. The final gears have less torque which means the acceleration is lower here. The final gears have less acceleration but can spin faster which makes the dragster able to reach higher speeds but slowly.
<h2>
Answer: Pulsars</h2>
A <u>pulsar</u> is a neutron star that emits very intense electromagnetic radiation at short and periodic intervals ( rotating really fast) due to its intense magnetic field that induces this emission.
Nevertheless, it is important to note that all pulsars are neutron stars, but not all neutron stars are pulsars.
Let's clarify:
A neutron star, is the name given to the remains of a supernova. In itself it is the result of the gravitational collapse of a massive supergiant star after exhausting the fuel in its core.
Neutron stars have a small size for their very high density and they rotate at a huge speed.
However, the way to know that a pulsar is a neutron star is because of its high rotating speed.
Answer:
143
Explanation:
Using one of the 3 fundamental equations in physics, y=vo*t+1/2gt^2, we can use this equation to find the total distance that was traveled.
Acceleration due to gravity is always 9.8m/s^2 and time is 5.4s, we also have no initial velocity.
Given this, we can plug in the known variables.
y=0t+1/2*9.8*5^2
simplify,
y=4.9*5.4^2
y=4.9*29.16
y=142.884m which we can round up to 143 meters
Final Answer: 143 meters