Pounds
If you are talking about the unit of measurement for weight is that of force it would be Newtons.
Answer:
The height of the image is, h' = 6.0 cm
The image is erect.
Explanation:
Given data,
The object distance, u = -5 cm
The focal length of convex lens, f = 10 cm
The object height, h = 3 cm
The lens formula,



v = -10 cm
The magnification factor of lens

m = 2



h' = 6 cm
The height of the image is, h' = 6 cm
The image is erect.
Protons are positively charged and neutrons are neutral whereas electrons are negatively charged.
Answer:
The crate's coefficient of kinetic friction on the floor is 0.23.
Explanation:
Given that,
Mass of the crate, m = 300 kg
One worker pushes forward on the crate with a force of 390 N while the other pulls in the same direction with a force of 320 N using a rope connected to the crate.
The crate slides with a constant speed. It means that the net force acting on it is 0. Net force acting on it is given by :

So, the crate's coefficient of kinetic friction on the floor is 0.23.
Answer:
2587.2 J.
Explanation:
From potential energy,
The work done to lift the chain = potential energy of the chain.
W = mgh............... Equation 1
Where W = work done to lift the chain, m = mass of the chain, g = acceleration due to gravity of the chain, h = height of the chain.
But,
m = m'd............... Equation 2
Where m' = density of the chain, d = length of the chain.
Substitute equation 2 into equation 1
W = m'dgh................ Equation 3
Given: m' = 2 kg/m, d = 12 m, h = 11 m, g = 9.8 m/s²
Substitute into equation 3
W = 2(12)(11)(9.8)
W = 2587.2 J.