Answer:
pKb = 10.96
Explanation:
Tartaric acid is a dyprotic acid. It reacts to water like this:
H₂Tart + H₂O ⇄ H₃O⁺ + HTart⁻ Ka1
HTart⁻ + H₂O ⇄ H₃O⁺ + Tart⁻² Ka2
When we anaylse the base, we have
Tart⁻² + H₂O ⇄ OH⁻ + HTart⁻ Kb1
HTart⁻ + H₂O ⇄ OH⁻ + H₂Tart Kb2
Remember that Ka1 . Kb2 = Kw, plus pKa1 + pKb2 = 14
Kb2 = Kw / Ka1 → 1×10⁻¹⁴ / 9.20×10⁻⁴ = 1.08×10⁻¹¹
so pKb = - log Kb2 → - log 1.08×10⁻¹¹ = 10.96
Using the ideal gas equation:
PV = nRT
Substituting n with mass / Mr
PV = mRT/Mr
Density = m/V
So rearranging:
Density = PMr/RT
P = 1 atm
R = 0.082 L atm / K mol
T = 273 K
Density = (1 x 80.6) / (0.082 x 273)
Density = 3.6 g / L
Answer:
six noble gases
Here are five of the six noble gases: helium, neon, argon, kypton and xeon. They're all colourless and transparent. Krypton and xeon form compounds only with difficulty. Helium, neon and argon don't form compounds at all.
Protons = 20
Electron = 20
Neutrons = 20
Hope this Helps :)
Transpiration is the progression of <em>water </em>inside a plant! So, the molecule representing transpiration is going to be good ol' H2O! =)