Answer: Temperature is the average kinetic energy of the molecules (how hot or cold something feels). Heat energy is the energy created y the motion of the molecules in an object. Heat flows from hot body to cold body. Temperature rises when heated and falls down when an object is cooled down.
There are three main scales commonly used in the world today to measure temperature: the Fahrenheit (°F) scale, the Celsius (°C) scale, and the Kelvin (K) scale. Each of these scales uses a different set of divisions based on different reference points, as described in detail below.
Explanation:
Answer:
c. 43 m/s
Explanation:
Given the following data;
Displacement, S = 90 meters
Time, t = 5.55 seconds
To find the initial velocity;
We would use the second equation of motion given by the formula;

Where;
- S represents the displacement or height measured in meters.
- u represents the initial velocity measured in meters per seconds.
- t represents the time measured in seconds.
- a represents acceleration measured in meters per seconds square.
We know that acceleration due to gravity is -9.8m/s² because the direction is downward.
Substituting into the equation, we have;



Rearranging the equation, we have;



Initial velocity, u = 43.41 ≈ 41 m/s
Answer:
v = 29.4 m / s
Explanation:
For this exercise we can use the conservation of mechanical energy
Lowest starting point.
Em₀ = K = ½ m v²
final point. Higher
= U = m g h
Let's use trigonometry to lock her up
cos 60 = y / L
y = L cos 60
Height is the initial length minus the length at the maximum angle
h = L - L cos 60
h = L (1- cos 60)
energy is conserved
Em₀ = Em_{f}
½ m v² = mgL (1 - cos 60)
v = 2g L (1- cos 60)
let's calculate
v² = 2 9.8 3.0 (1- cos 60)
v = 29.4 m / s
Answer:
1)50000J
2) At the start of the trip
3) At the end of the trip
4) The higher the height above the ground, the higher the potential energy
5) As speed increases, Kinetic Energy increase
C) 15 J because it cannot gain energy or lose mass