A or possibly C because the other options have nothing to do with the size of the vibration. If i was you I would answer with A
I think the answer might be b
Answer:
A) ΔU = 3.9 × 10^(10) J
B) v = 8420.75 m/s
Explanation:
We are given;
Potential Difference; V = 1.3 × 10^(9) V
Charge; Q = 30 C
A) Formula for change in energy of transferred charge is given as;
ΔU = QV
Plugging in the relevant values gives;
ΔU = 30 × 1.3 × 10^(9)
ΔU = 3.9 × 10^(10) J
B) We are told that this energy gotten above is used to accelerate a 1100 kg car from rest.
This means that the initial potential energy will be equal to the final kinetic energy since all the potential energy will be converted to kinetic energy.
Thus;
P.E = K.E
ΔU = ½mv²
Where v is final velocity.
Plugging in the relevant values;
3.9 × 10^(10) = ½ × 1100 × v²
v² = [7.8 × 10^(8)]/11
v² = 70909090.9090909
v = √70909090.9090909
v = 8420.75 m/s
Answer:
A. It will continue traveling at the same speed.
Explanation:
I'm not 100% sure on this answer, but if I had this question I would be confident in this answer. It makes sense because unbalanced forces cause an object to start, stop, slow down, or speed up. Without these forces, the object should just keep traveling at the same speed.
I hope this helps! Let me know if it's right or not. ☺
<span>b.the skin of a banana turns from green to yellow as it ripens. </span>