Molar mass of sodium=23g
2 mole sodium gives 2 g H2
i.e 46g sodium gives 2g H2
so 65.4g will give=2.84g H2
now no. of molecules = 2.8/2*avogadros number
Answer:
38.3958 °C
Explanation:
As,
1 gram of carbohydrates on burning gives 4 kilocalories of energy
1 gram of protein on burning gives 4 kilocalories of energy
1 gram of fat on burning gives 9 kilocalories of energy
Thus,
27 g of fat on burning gives 9*27 = 243 kilocalories of energy
20 g of protein on burning gives 4*20 = 80 kilocalories of energy
48 gram of carbohydrates on burning gives 4*48 = 192 kilocalories of energy
Total energy = 515 kilocalories
Using,

Given: Volume of water = 23 L = 23×10⁻³ m³
Density of water= 1000 kg/m³
So, mass of the water:
Mass of water = 23 kg
Initial temperature = 16°C
Specific heat of water = 0.9998 kcal/kg°C

Solving for final temperature as:
<u>Final temperature = 38.3958 °C </u>
The density of the gold is 19.3 grams/cc so each cc weighs 19.3grams. Now we can obtain the volume of gold from the given dimensions ie 4.72x8.21x3.98= 154.23 cc. So for the answer, just multiply the volume or 154.23 x 19.3= 2976.6 grams is the answer.
Answer:
None of these
Explanation:
Friedel–Craft reaction is a reaction involves the attachment of substituents to the benzene ring.
Mechanism of the reaction of methylbenzene with 1-chlorodecane in the presence of ether and aluminum chloride :
Step -1 : Generation of stable carbocation.
Aluminium chloride acts as Lewis acid which removes the chloride ion from the alkyl halide forming carbocation. The primary carbocation thus formed gets rearranged to secondary primary carbocation which is more stable due to hyperconjugation.
Step-2: Attack of the ring to the carbocation
The pi electrons of the ring behave as a nucleophile and attacks the carbocation. Since, the group attached on the benzene is methyl (+R effect) , the attack is from the ortho and the para positions. Para product is more stable due to less steric hinderance.
The product formed is shown in mechanism does not mention in any of the options.
So, None of these is the answer