To do this, you would first add together the molar mass of all involved elements, to find how many grams are in a mole of Cu(OH)2. Keep in mind, the molar mass is equal to the atomic mass of an element in grams. For example the molar mass of copper (Cu) would be 63.55 (with 2 sig. figs.)
Therefore, now we add together the mass of all elements involved.
Cu: (63.55)+O2(15.99x2=31.98)+H2(1.01x2=2.02)
63.55+31.98+2.02= 97.55g per mole of Cu(OH)2.
Now, divide what we have by how much it takes to get a mole of the stuff.
68.1/97.55= 0.698mol Cu(OH)2
Answer:
T2 = 29°C
Explanation:
Given data:
Heat added = 420 j
Mass of water = 25 g
Initial temperature = 25°C
Final temperature = ?
Solution;
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water = 4.18 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Now we will put the values.
420 j = 25 g ×4.18 j/g.°C × (Final temperature - initial temperature)
420 j = 25 g ×4.18 j/g.°C × (T2 - 25°C)
420 j = 104.5 j/°C × (T2 - 25°C)
420 j /104.5 j/°C = T2 - 25°C
4°C + 25°C = T2
T2 = 29°C
Because there is no need for them
An atom always has the same number of protons and electrons, so it has 14 electrons.
Remembe! Dont get confused between at atom and an ion. Atoms have same number of protons and electrons but in an ion it differs,