1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zmey [24]
3 years ago
12

A rat of mass 0.25 kg runs at a speed of 1.25 m/s. What is the momentum of the rat?

Physics
1 answer:
Natalka [10]3 years ago
8 0

Answer:0.313 kg•m/s

Explanation:

You might be interested in
A tiger travels 3m/s^2 for 4.1s,what was its initial speed if it's final speed was 55k/h?
zaharov [31]
Acceleration a=3m/s^2
time t= 4.1seconds
Final velocity V= 55km/h
initial velocity U= ?
First convert V to m/s
36km/h=10m/s
55km/h= 55*10/36=15.28m/s
Using the formula V= U+at
U= V-at
U= 15.28-3*4.1=15.28-12.3=2.98m/s
Initial velocity U= 2.98m/s or 10.73km/h (Using the conversion rate 36km/h=10m/s)
8 0
3 years ago
what is the value of the constant for a second order reaction if the reactant concentration drops from .657 M to ,0981 M in 17 s
yaroslaw [1]

Answer : The value of the constant for a second order reaction is, 0.51M^{-1}s^{-1}

Explanation :

The expression used for second order kinetics is:

kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}

where,

k = rate constant = ?

t = time = 17s

[A_t] = final concentration = 0.0981 M

[A_o] = initial concentration = 0.657 M

Now put all the given values in the above expression, we get:

k\times 17s=\frac{1}{0.0981M}-\frac{1}{0.657M}

k=0.51M^{-1}s^{-1}

Therefore, the value of the constant for a second order reaction is, 0.51M^{-1}s^{-1}

6 0
3 years ago
Kiera, a 330 N girl, steps in water that someone spilt on the floor. The coefficient of kinetic friction between Kiera and the f
shutvik [7]

Answer:

<em>The force of kinetic friction between Kiera and the floor is 9.24 N</em>

Explanation:

<u>Friction Force</u>

When an object is moving and encounters friction in rough surfaces, it loses acceleration and/or velocity because the friction force opposes motion.

The friction force when an object is moving on a horizontal surface is calculated by:

Fr=\mu N

Where μ is the coefficient of static or kinetics friction and N is the normal force.

If no forces other then the weight and the normal are acting upon the y-direction, then the weight and the normal are equal in magnitude:

N = W

Thus, the friction force is:

Fr=\mu W

Kiera, the W=330 N girl steps in water that has a coefficient of friction of μ=0.028 with the floor.

The kinetic friction force is:

Fr = 0.028*330

Fr = 9.24 N

The force of kinetic friction between Kiera and the floor is 9.24 N

3 0
3 years ago
Two vehicles A and B accelerate uniformly from rest.
spayn [35]

Answer:

(i) Please find attached the required velocity time graphs plotted with MS Excel

(ii) The velocity of vehicle A at the 18th second = 20 m/s

The velocity of vehicle B at the 18th second = 0 m/s

(iii) The distance between the two vehicles at the moment in (ii) above is 60 meters

Explanation:

The given parameters of the motion of vehicles A and B are;

The acceleration of vehicles A and B = Uniform acceleration starting from rest

The maximum velocity attained by vehicle A = 30 m/s

The time it takes vehicle A to attain maximum velocity = 10 s

The maximum velocity attained by vehicle B = 30 m/s

The time it takes vehicle B to attain maximum velocity = The time it takes vehicle A to attain maximum velocity = 10 s

The time duration vehicle A maintains its maximum velocity = 6 s

The time duration vehicle B maintains its maximum velocity = 4 s

(i) From the question, we get the following table;

\begin{array}{ccc}Time &V_A&V_B\\0&0&0\\10&30&40\\14&30&40\\16&30&20\\18&20&0\\22&0&\end{array}

From the above table the velocity time graphs of vehicles A and B is created with MS Excel and can included here

(ii) The velocity of vehicle A at the start = 0 m/s

After accelerating for 10 seconds, the velocity of vehicle A = The maximum velocity of vehicle A = 30 m/s

The maximum velocity is maintained for 6 seconds which gives;

At 10 s + 6 s = 16 s, the velocity of vehicle A = 30 m/s

The time it takes vehicle A to decelerate to rest = 6 s

The deceleration of vehicle A, a_A = (30 m/s - 0 m/s)/(6 s) = 5 m/s²

Therefore, we get;

v = u - a_A·t

At the 18th second, the deceleration time, t = 18 s - 16 s = 2 s

u = 30 m/s

∴ v₁₈ = 30 - 5 × 2 = 20

The velocity of vehicle A at the 18th second, V_{18A} = 20 m/s

For vehicle B, we have;

At the 14th second, the velocity of vehicle B = 40 m/s

Vehicle B decelerates to rest in, t = 4 s

The deceleration of vehicle B, a_B = (40 m/s - 0 m/s)/(4 s) = 10 m/s²

For vehicle B, at the 18th second, t = 18 s - 14 s = 4 s

∴ v_{18B} = 40 m/s - 10 m/s² × 4 s = 0 m/s

The velocity of the vehicle B at 18th second, v_{18B} = 0 m/s

(iii) The distance covered by vehicle A up to the 18th second is given by the area under the velocity-time graph as follows;

The area triangle A₁ = (1/2) × 10 × 30 = 150

Area of rectangle, A₂ = 6 × 30 = 180

Area of trapezoid, A₃ = (1/2) × (30 + 20) × 2 = 50

The distance covered in the 18th second by vehicle S_A = A₁ + A₂ + A₃

∴ S_A = 150 + 180 + 50 = 380

The distance covered in the 18th second by vehicle S_A = 380 m

The distance covered by the vehicle B in the 18th second is given by the area under the velocity time graph of vehicle B as follows;

Area of trapezoid, A₅ = (1/2) × (18 + 4) × 40 = 440

The distance covered by the trapezoid, S_B = 440 m

The distance of the two vehicles apart at the 18t second, S_{AB} = S_B - S_A

∴ S_{AB} = 440 m - 380 m = 60 m

The distance of the two vehicles from one another at the 18th second, S_{AB} = 60 m.

5 0
3 years ago
An object floats in a beaker as shown. when it was put into the beaker, it displaced an amount of water into the graduated cylin
Tanzania [10]

Answer:

answer is  C. 10 g

Explanation:

: When an object floats, it displaces an amount of water that has the same mass as itself. Therefore, the mass of the water in the graduated cylinder is equal to the mass of the object. We can see that there are 10 mL of water in the graduated cylinder. We also know that the density of water is 1 g/mL. Since each mL of water has a mass of 1 g, then 10 mL of water has a mass of 10 g. If the mass of the displaced water is 10 g, then the mass of the floating object is also 10 g.

6 0
3 years ago
Other questions:
  • th core of a star is the size of our sun with mass 2 times as great as the sun and is rotating at a frequency of 1 rev evru 100
    5·1 answer
  • The force of gravity pulls down on your school with a total force of 400,000 newtons. The force of gravity pulling down on your
    14·1 answer
  • Lightning results from ________.
    15·1 answer
  • Which of the following statements about iron filings placed upon glass resting on top of a bar magnet is false?
    11·1 answer
  • What is energy state
    11·1 answer
  • The force of attraction which exists between all objects with mass Is called
    15·2 answers
  • Where do trees really come from and this is my little sister asking it not me
    14·2 answers
  • When used as an energy source in a nuclear power plant, uranium is burned in a similar way as one would burn wood or coal for en
    9·1 answer
  • Hoosier Manufacturing operates a production shop that is designed to have the lowest unit production cost at an output rate of 1
    9·1 answer
  • What makes a planet different from other celestial bodies?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!