Answer:
- Option B) Absorbed energy results in the change in potential energy.
Explanation:
Please, find attached the graph that accompanies this question.
The<em> melting</em> proces is the change from solid phase to liquid phase. It is represented with the lower flat line with the symbol ΔHfus over it.
The line is flat because the temperature remains constant during this process. Thus, you know the option "C) As the temperature increases during melting, the kinetic energy also increases" is FALSE.
What happens during this process is:
- Most of the energy received by the particles from heating, during the melting process, goes to overcome the intermolecular bonds between the particles. This results in increasing the distance between the particles, so the internal potential energy increases. This is what the option <em>"B) Absorbed energy results in the change in potential energy" correctly describes.</em> Hence, option B) is TRUE.
Althoug most of the heat energy received is transformed into potential energy, yet a small part of the heat energy increases a bit the kinetic energy of the particles, because the particles will vibrate faster around their relatively fixed positions. Hence, the option "<em>A) The kinetic energy of the particles remains unchanged</em>" is FALSE.
As for option D) it is not reasonable at all: none chemical or physical priciple can be used to state that <em>the kinetic energy decreases as the particles move farther apart</em>. Thus, this is FALSE.
Answer
given,
mass of the stick = 290 grams = 0.29 Kg
Force on the stick on one side = F = 9 N
force acting perpendicular to stick.
magnitude of acceleration
rate of change of angular momentum is equal to Force
rate of change of angular momentum = 9 N
F = m a


a = 31.034 m/s²
Direction of motion will in the direction of force application or in the direction of change of velocity
Answer:
a. 1.81
b. using the lap button feature
Explanation:
a. avg of the times
Answer: 53125joules
Explanation: The formula for kinetic energy is 1/2mv^2.
So we would have
1/2[(170)(25x25)]=53125
Answer:
The GPE, stored is 640 Joules
Explanation:
The given parameters are;
The given mass of the astronaut, m = 80 kg
The height of the top of the lunar lander to which the astronaut climbs, h = 5 m
The gravity strength on the moon, g = 1.6 N/kg
The Gravitational Potential Energy, GPE, stored is given according to the following equation;
GPE stored = m·g·h
Therefore, by substituting the known values, we have;
GPE Stored = 80 kg × 1.6 N/kg × 5 m = 640 Joules
The GPE, stored = 640 Joules.