To get x on its own, you times the 3 over to the other side so the 3 cancels out on the LHS.
~ x greater than or equal to -18
(C)
Answer:
When there is a change in magnetic flux linkage through a loop of wire, an electromotive force is induced in the loop, according to the Faraday-Newmann-Lenz Law:
![\epsilon=-\frac{N\Delta \Phi}{\Delta t}](https://tex.z-dn.net/?f=%5Cepsilon%3D-%5Cfrac%7BN%5CDelta%20%5CPhi%7D%7B%5CDelta%20t%7D)
where
N is the number of turns in the loop
is the change in magnetic flux through the loop
is the time elapsed
The negative sign in the formula represents Lenz's Law, and tells us about the direction of the electromotive force.
In fact, the negative sign means that the direction of the induced emf is such that to oppose to the change in the magnetic flux that originated the induced emf.
This is a consequence of the law of conservation of energy: no energy can be created out of nowhere. In fact, when the emf is induced in the loop, electrical energy appears in the circuit; however, this electric energy cannot come out of nowhere. Instead, it is just "created" from the transformation of some other form of energy (for instance, the mechanical energy that is used to move the loop in the magnetic field, and changing its magnetic flux).
The negative sign in Lenz's Law tells exactly this: the direction of the induced emf is such that it opposes the initial change in magnetic flux that generated the induced emf, so that overall the total energy is conserved.
Complete question:
Resistor is made of a very thin metal wire that is 3.2 mm long, with a diameter of 0.4 mm. What is the electric field inside this metal resistor? If the potential difference due to electric field between the two ends of the resistor is 10 V.
Answer:
The electric field inside this metal resistor is 3125 V/m
Explanation:
Given;
length of the wire, L = 3.2 mm = 3.2 x 10⁻³ m
diameter of the wire, d = 0.4 mm = 0.4 x 10⁻³ m
the potential difference due to electric field between the two ends of the resistor, V = 10 V
The electric field inside this metal resistor is given by;
ΔV = EL
where;
ΔV is change in electric potential
E = ΔV / L
E = 10 / (3.2 x 10⁻³ )
E = 3125 V/m
Therefore, the electric field inside this metal resistor is 3125 V/m
Refer to the diagram shown below.
Still-water speed = 9.5 m/s
River speed = 3.75 m/s down stream.
The velocity of the swimmer relative to the bank is the vector sum of his still-water speed and the speed of the river.
The velocity relative to the bank is
V = √(9.5² + 3.75²) = 10.21 m/s
The downstream angle is
θ = tan⁻¹ 3.75/9.5 = 21.5°
Answer: 10.2 m/s at 21.5° downstream.
Hello friend!!
We know that kinetic energy is the energy possessed due to the motion of the object. And we know if the object is in a fast motion then the temperature would be high, whereas if the object is slow in motion then it will have lower temperature. So we know that the kinetic energy is indirectly related to temperature.From our knowledge we can conclude that HIGHER THE TEMPERATURE, HIGHER THE KINETIC ENERGY and LOWER THE TEMPERATURE, LOWER THE KINETIC ENERGY.
Hence, the answer to your question here is,a.kinetic energy, temperature, and thermal energy increase.
Hope it helps!!All the best!!