Answer:
A) the maximum acceleration the boulder can have and still get out of the quarry
B) how long does it take to be lifted out at maximum acceleration if it started from rest
Explanation:
A)
let +y is upward. look below at the free body diagram. the mass M refers to the combined mass of the boulder and chain.
the weight of the chain is:
and maximum tension is 
total mass and weight is :


∑



B)
maximum acceleration

using 
to solve for t


Explanation:
12) q = mCΔT
125,600 J = (500 g) (4.184 J/g/K) (T − 22°C)
T = 82.0°C
13) Solving for ΔT:
ΔT = q / (mC)
a) ΔT = 1 kJ / (0.4 kg × 0.45 kJ/kg/K) = 5.56°C
b) ΔT = 2 kJ / (0.4 kg × 0.45 kJ/kg/K) = 11.1°C
c) ΔT = 2 kJ / (0.8 kg × 0.45 kJ/kg/K) = 5.56°C
d) ΔT = 1 kJ / (0.4 kg × 0.90 kJ/kg/K) = 2.78°C
e) ΔT = 2 kJ / (0.4 kg × 0.90 kJ/kg/K) = 5.56°C
f) ΔT = 2 kJ / (0.8 kg × 0.90 kJ/kg/K) = 2.78°C
14) q = mCΔT
q = (2000 mL × 1 g/mL) (4.184 J/g/K) (80°C − 20°C)
q = 502,000 J
20) q = mCΔT
q = (2000 g) (4.184 J/g/K) (100°C − 15°C) + (400 g) (0.9 J/g/K) (100°C − 15°C)
q = 742,000 J
24) q = mCΔT
q = (0.10 g) (0.14 J/g/K) (8.5°C − 15°C)
q = -0.091 J
Explanation:
hmm by the increasing the size of wheel and decreasing axle