Formula to find gravitational potential energy:
mgh
m: mass
g: gravitational acceleration
h: height (relative to reference level)
so the P.E. at 1.0.m is (5x9.8x1)= 49J
P.E. at 1.5m is (5x9.8x1.5) =73.5J
P.E. at 2.0m is (5x9.8x2)=98J
Work = force × distance, assuming that the force is parallel to displacement.
Work L=75×5=375J
The runner has initial velocity vector

and acceleration vector

so that her velocity at time
is

She runs directly east when the vertical component of
is 0:

It's not clear what you're supposed to find at this particular time... possibly her position vector? In that case, assuming she starts at the origin, her position at time
would be

so that after 10.4 s, her position would be

which is 19.9 m away from her starting position.
Answer:
by moving your hands up and down your we're creating transverse wave which travel in a right angle shape towards your friend
Answer:
100nm-280nm
Explanation:
Ultraviolet rays (UV) are part of the electromagnetic spectrum. It goes from 10nm to 400nm wavelengths, they are shorter than visible light, thus it's impossible to see by a human eye, and larger than X-rays (used in many medical applications and harmful when long-exposed).
According to its wavelengths, UV can be divided in different types:
UVA: long wave UV (315nm-400nm)
UVB: medium-wave UV (280nm-315nm)
UVC: short wave UV (100nm-280nm)
Therefore, UVC comprises wavelengths between 10nm and 280nm.