That’s really easy ask your teacher and also peace happy
Answer:
skateboard b
Explanation:
p=mv
skateboard a
p=(60kg)(1.5m/s)=90kg*m/s
skateboard b
p=(50kg)(2m/s)=100kg*m/s
Longitudinal, because the sound can only travel at one direction
Scientists have been observing Earth for a long time. They use NASA satellites and other instruments to collect many types of information about Earth's land, atmosphere, ocean and ice. This information tells us that Earth's climate is getting warmer.
Extra:
Extra greenhouse gases in our atmosphere are the main reason that Earth is getting warmer. Greenhouse gases, such as carbon dioxide (CO2) and methane, trap the Sun's heat in Earth's atmosphere.
It's normal for there to be some greenhouse gases in our atmosphere. They help keep Earth warm enough to live on. But too many greenhouse gases can cause too much warming.
The burning of fossil fuels like coal and oil increase the amount of CO2 in our air. This happens because the burning process combines carbon with oxygen in the air to make CO2.
It's important that we monitor CO2 levels, because too much CO2 can cause too much warming on Earth. Several NASA missions have instruments that study CO2 in the atmosphere.
First, balance the reaction:
_ KClO₃ ==> _ KCl + _ O₂
As is, there are 3 O's on the left and 2 O's on the right, so there needs to be a 2:3 ratio of KClO₃ to O₂. Then there are 2 K's and 2 Cl's among the reactants, so we have a 1:1 ratio of KClO₃ to KCl :
2 KClO₃ ==> 2 KCl + 3 O₂
Since we start with a known quantity of O₂, let's divide each coefficient by 3.
2/3 KClO₃ ==> 2/3 KCl + O₂
Next, look up the molar masses of each element involved:
• K: 39.0983 g/mol
• Cl: 35.453 g/mol
• O: 15.999 g/mol
Convert 10 g of O₂ to moles:
(10 g) / (31.998 g/mol) ≈ 0.31252 mol
The balanced reaction shows that we need 2/3 mol KClO₃ for every mole of O₂. So to produce 10 g of O₂, we need
(2/3 (mol KClO₃)/(mol O₂)) × (0.31252 mol O₂) ≈ 0.20835 mol KClO₃
KClO₃ has a total molar mass of about 122.549 g/mol. Then the reaction requires a mass of
(0.20835 mol) × (122.549 g/mol) ≈ 25.532 g
of KClO₃.