Answer:
(a) T= 38.4 N
(b) m= 26.67 kg
Explanation:
We apply Newton's second law:
∑F = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Kinematics
d= v₀t+ (1/2)*a*t² (Formula 2)
d:displacement in meters (m)
t : time in seconds (s)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
v₀=0, d=18 m , t=5 s
We apply the formula 2 to calculate the accelerations of the blocks:
d= v₀t+ (1/2)*a*t²
18= 0+ (1/2)*a*(5)²
a= (2*18) / ( 25) = 1.44 m/s²
to the right
We apply Newton's second law to the block A
∑Fx = m*ax
60-T = 15*1.44
60 - 15*1.44 = T
T = 38.4 N
We apply Newton's second law to the block B
∑Fx = m*ax
T = m*ax
38.4 = m*1.44
m= (38.4) / (1.44)
m = 26.67 kg
Lol i think someone would be fired from their job if they threw food
Huh huh what? ¿Can’t you translate?
choice 3 because the arrow has to be downward for as. and if the divers want to live, the vx has to be going right and not 0 or they would hit the rocks. I hope it's right!
You have to convert 400 cm into meters.
I'm assuming you mean a force of 10 Newtons in 8 seconds.
P= w/t
w=Fd
w= 10 x 4 = 40
P= 40 / 8 = 5
5 is your answer.