I believe so! If not tell me So I can delete this
In electrophilic aromatic substitution reactions the hydroxyl group is an o,p-director because: hydroxyl group donates the electron density to the ring by induction and destabilizes the meta sigma complex and by resonance and it stabilizes the ortho and para sigma complexes of aromatic ring .
Most ring activators have atoms with unshared electron pairs directly attached to a carbon atom of the benzene ring . For example, the — OH group has two pairs of unshared electrons on the oxygen atom , which will form a bond to a carbon atom of the benzene ring . Thus , the — OH group will be an activating group in electrophilic aromatic substitution reactions .
to learn more about electrophilic aromatic substitution reactions please click here ,
brainly.com/question/28286554
#SPJ4
Answer:
2.56 grams of H₂S is needed to produce 18.00g of PbS if the H2S is reacted with an excess (unlimited) supply of Pb(CH₃COO)₂
Explanation:
The balanced reaction is:
Pb(CH₃COO)₂ + H₂S → 2 CH₃COOH + PbS
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction) they react and produce:
- Pb(CH₃COO)₂: 1 mole
- H₂S: 1 mole
- CH₃COOH: 2 moles
- PbS: 1 mole
In this case, to know how many grams of H₂S are needed to produce 18.00 g of PbS, it is first necessary to know the molar mass of the compounds H₂S and PbS and then to know how much it reacts by stoichiometry. Being:
- H: 1 g/mole
- S: 32 g/mole
- Pb: 207 g/mole
The molar mass of the compounds are:
- H₂S: 2* 1 g/mole + 32 g/mole= 34 g/mole
- PbS: 207 g/mole + 32 g/mole= 239 g/mole
So, by stoichiometry they react and are produced:
- H₂S: 1 mole* 34 g/mole= 34 g
- PbS: 1 mole* 239 g/mole= 239 g
Then the following rule of three can be applied: if 239 grams of PbS are produced by stoichiometry from 34 grams of H₂S, 18 grams of PbS from how much mass of H₂S is produced?

mass of H₂S= 2.56 grams
<u><em>2.56 grams of H₂S is needed to produce 18.00g of PbS if the H2S is reacted with an excess (unlimited) supply of Pb(CH₃COO)₂</em></u>
The ability of a liquid to flow up a narrow tube which is unassisted against the gravity of the attraction between molecules of the same substance. The curvature which is of the surface of a liquid at the interface with the container, the attraction between dissimilar molecules for the resistance of a liquid to flow the elasticity of surface layer of liquid because of the liquid trying to minimize its surface area.