Energy is invisible yet it's all around us and throughout the universe. Energy can never be made or destroyed, but its form can be converted and changed.
While energy can be transferred or transformed, the total amount of energy does not change – this is called energy conservation.
Energy transformation, also known as energy conversion, is the process of changing energy from one form to another. In physics, energy is a quantity that provides the capacity to perform work or provides heat.
When energy is transformed from one form to another, or moved from one place to another, or from one system to another there is energy loss. This means that when energy is converted to a different form, some of the input energy is turned into a highly disordered form of energy, like heat. This consent is known as “hidden energy”.
If, in a peptide chain, there were 85 amino acids each joined by peptide bonds, there would only be 1 N-terminus group that would be present. The N-terminus group is always the start of the chain of a amino acid chain or a protein or a polypeptide. It refers to the free amine group present that is located at the end part of the chain. So, that no matter how many amino acids in a chain there would always be only one N-terminus group.
Answer:
19.5g is the theoretical yield of alum
Explanation:
Based on the balanced reaction, 4 moles of sulfuric acid produce 2 moles of alum. To solve this question we need to find the moles of H2SO4. With these moles we can find the moles of alum and its mass assuming all sulfuric acid reacts producing alum.
<em>Moles Sulfuric Acid:</em>
8.3mL = 0.0083L * (9.9mol/L) = 0.08217 moles sulfuric acid
<em>Moles Alum:</em>
0.08217 moles sulfuric acid * (2mol KAl(SO4)2•12H2O / 4mol H2SO4) =
0.041085 moles KAl(SO4)2•12H2O
<em>Mass Alum -Molar mass: 474.3884 g/mol-</em>
0.041085 moles KAl(SO4)2•12H2O * (474.3884 g/mol) =
<h3>19.5g is the theoretical yield of alum</h3>