Answer:
The actual elevation angle is 12.87 degrees
Explanation:
In the attachment you can clearly see the situation. The angle of elevation as seen for the scuba diver is shown in magenta, we conclude that
.
Using Snell's Law we can write:

,
Let's approximate the index of refraction of the air (medium 1 in the picture) to 1.
We thus have:

. Calling
the actual angle of elevation, we get from the picture that
<span>Extremely powerful single waves have no effect on ships at sea since the depth of water allows the energy to be distributed over hundreds and thousands of feet. In deep water, the bigger the wave, the faster it moves and the slower the surface changes height. As the wave gets into shallow waters, it slows down and can start to pile up to large heights.</span>
Answer:
G. It will take twice as long.
Explanation:
Let's call
the original speed of the plane and
the distance between Dallas and Pensacola. The time the plane originally takes to complete the flight is

In this problem, we are told that the plane encounters wind moving at half of its speed:
, in the opposite direction. This means that the new speed of the plane is

And so, the time the plane takes now to complete the flight is

So, the plane takes twice the time as before.
<h3><u>Answer;</u></h3>
C. Supersaturated
<h3><u>Explanation</u>;</h3>
- Solutions are homogeneous mixtures that are created by mixing a solute and a solvent. Solute is the substance present in smaller amounts that dissolves in a solvent such as water which is the substance present in larger amount.
- A solution, can be<u> unsaturated, saturated or supersaturated. An unsaturated solution</u> is a solution that contains less solute that can be dissolved, it doesn't contain the maximum amount of solute.
- <u>A saturated solution</u> is a solution containing the maximum amount of solute that can be dissolved at a given temperature. Any additional solute will remain undissolved in the container.
- <u>A supersaturated solution</u> is a solution created when a solution is carefully cooled because it contains more solute than the solubility allows.