You need to divide the motion into its component: vertical and horizontal motion.
The time taken to fall vertically from the cliff is equal to the time taken to move horizontally.
Using the vertical component, which is an accelerated motion with an initial velocity equal to zero, we can solve for t:
h = 1/2 · g · t²
t = √(2·h / g)
= √(2·50 / 9.8)
= 3.2 s
Horizontally, it is a constant motion:
d = v · t
= 20 · 3.2
= 64 m
The ball will strike the ground at a distance of 64 meters from the cliff.
The Kelvin scale is also called absolute zero scale
Explanation:
true
YES I WILL HELP YOU SO MUCH
The sin function and the cos function are used to resolve vectors into their componets
Answer:
w = 1.976 rpm
Explanation:
For simulate the gravity we will use the centripetal aceleration
, so:

where w is the angular aceleration and r the radius.
We know by the question that:
r = 60.5m
= 2.6m/s2
So, Replacing the data, and solving for w, we get:

W = 0.207 rad/s
Finally we change the angular velocity from rad/s to rpm as:
W = 0.207 rad/s = 0.207*60/(2
)= 1.976 rpm