1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
3 years ago
10

Describe at least 1 advantage and 1 disadvantaged to learning about a scientific discovery from

Physics
1 answer:
Over [174]3 years ago
8 0

Answer:

A

Explanation:

You can get alot of info from it then again the info could be misleading

Answer:

B

Explanation:

You can get some good info from the internet but its most likely the wrong info

Answer:

c

Explanation:

It informs you with the info you need then again you are most likely getting socialy forced information.

You might be interested in
Which property do gas particles at the same temperature share?
atroni [7]
It’s potential energy
8 0
3 years ago
Read 2 more answers
Two transverse waves travel along the same taut string. Wave 1 is described by y1(x, t) = A sin(kx - ωt), while wave 2 is descri
Vadim26 [7]

Answer:

6) Wave 1 travels in the positive x-direction, while wave 2 travels in the negative x-direction.

Explanation:

What matters is the part kx \pm \omega t, the other parts of the equation don't affect time and space variations. We know that when the sign is - the wave propagates to the positive direction while when the sign is + the wave propagates to the negative direction, but <em>here is an explanation</em> of this:

For both cases, + and -, after a certain time \delta t (\delta t >0), the displacement <em>y</em> of the wave will be determined by the kx\pm\omega (t+\delta t) term. For simplicity, if we imagine we are looking at the origin (x=0), this will be simply \pm \omega (t+\delta t).

To know which side, right or left of the origin, would go through the origin after a time \delta t (and thus know the direction of propagation) we have to see how we can achieve that same displacement <em>y</em> not by a time variation but by a space variation \delta x (we would be looking where in space is what we would have in the future in time). The term would be then k(x+\delta x)\pm\omega t, which at the origin is k \delta x \pm \omega t. This would mean that, when the original equation has kx+\omega t, we must have that \delta x>0 for k\delta x+\omega t to be equal to kx+\omega\delta t, and when the original equation has kx-\omega t, we must have that \delta x for k\delta x-\omega t to be equal to kx-\omega \delta t

<em>Note that their values don't matter, although they are a very small variation (we have to be careful since all this is inside a sin function), what matters is if they are positive or negative and as such what is possible or not .</em>

<em />

In conclusion, when kx+\omega t, the part of the wave on the positive side (\delta x>0) is the one that will go through the origin, so the wave is going in the negative direction, and viceversa.

4 0
3 years ago
12)A black body is heated from 27°C to 127° C. The ratio of their energies of radiations emitted will be
Nat2105 [25]

Answer:

81:256.

Explanation:

Let T denote the absolute temperature of this object.

Calculate the value of T before and after heating:

T(\text{before}) = 27 + 273 = 300\; \rm K.

T(\text{after}) = 127 + 273 = 400\; \rm K.

By the Stefan-Boltzmann Law, the energy that this object emits (over all frequencies) would be proportional to T^4.

Ratio between the absolute temperature of this object before and after heating:

\displaystyle \frac{T(\text{before})}{T(\text{after})} = \frac{3}{4}.

Therefore, by the Stefan-Boltzmann Law, the ratio between the energy that this object emits before and after heating would be:

\displaystyle \left(\frac{T(\text{before})}{T(\text{after})}\right)^{4} = \left(\frac{3}{4}\right)^{4} = \frac{81}{256}.

4 0
3 years ago
ou are sitting in your car at rest at a traffic light with a bicyclist at rest next to you in the adjoining bicycle lane. As soo
madam [21]

Till the time car is just adjacent to the bicycle we can say

distance moved by cycle = distance moved by car

Time taken by car to accelerate from rest

t = \frac{v_f - v_i}{a}

t = \frac{49 - 0}{7} = 7 s

Time taken by cycle to accelerate

t = \frac{23 - 0}{15} = 1.53 s

now the distance moved by cycle in time "t"

d = \frac{23 + 0}{2}*1.53 + 23(t - 1.53)

distance moved by car in same time

d = \frac{7t + 0}{2}(t)

now make them equal

3.5t^2 = 17.595 - 35.19 + 23t

3.5 t^2 - 23t + 17.595 = 0

t = 5.68 s

so cycle will move ahead of car for t = 5.68 s

8 0
3 years ago
Read 2 more answers
What is the mass moment of inertia of a 20kg sphere with a radius of 0.2m about a point on the sphere's perimeter
Kobotan [32]

Answer:

I = M R^2 is the moment of inertia about a point that is a distance R from the center of mass (uniform distributed mass).

The moment  of inertia about the center of a sphere is 2 / 5 M R^2.

By the parallel axis theorem the moment of inertia about a point on the rim of the sphere is  I = 2/5 M R^2 + M R^2 = 7/5 M R^2

I = 7/5 * 20 kg * .2^2 m = 1.12 kg m^2

7 0
2 years ago
Other questions:
  • In order to move a bag of dog food across a 10 meter room you apply20 Newton’s of force how much work was done?
    15·1 answer
  • The Milky Way is a _____ galaxy.
    11·2 answers
  • The process that uses a half-life in its computation is
    6·1 answer
  • If earth increase the distance from the sun, what will happen to the period of orbi t(the time it takes to complete one revoluti
    9·1 answer
  • A deuteron (a nucleus that consists of one proton and one neutron) is accelerated through a 4.01 kV potential difference. How mu
    5·1 answer
  • Air at 80 kPa and 400 K enters an adiabatic diffuser steadily at a rate of 6000 kg/h and leaves at 100 kPa. The velocity of the
    11·1 answer
  • Which element has the fewest valence electrons?
    10·1 answer
  • A car moves at a constant speed of 90km/h from a starting point. Another car moves at 70km/h after 2hours from the same starting
    15·1 answer
  • Which of these forces can increase the effect of electric force?
    14·1 answer
  • Select the correct answer?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!