Answer:
<em>Numbers: 6 and -2</em>
Step-by-step explanation:
<u>Equations</u>
This question can be solved by inspection. It's just a matter of factoring 12 into two factors that sum 4. Both numbers must be of different signs and they are 6 and -2. Their sum is indeed 6-2=4 and their product is 6*(-2)=-12.
However, we'll solve it by the use of equations. Let's call x and y to the numbers. They must comply:
![x+y=4\qquad\qquad [1]](https://tex.z-dn.net/?f=x%2By%3D4%5Cqquad%5Cqquad%20%5B1%5D)
![x.y=-12\qquad\qquad [2]](https://tex.z-dn.net/?f=x.y%3D-12%5Cqquad%5Cqquad%20%5B2%5D)
Solving [1] for y:

Substituting in [2]

Operating:

Rearranging:

Solving with the quadratic formula:

With a=1, b=-4, c=-12:



The solutions are:


This confirms the preliminary results.
Numbers: 6 and -2
Answer:
Second option
Step-by-step explanation:
They have two congruent pairs of sides and one congruent pair of angles.
Answer: x= 29°
Step-by-step explanation: Add angles D and C. Subtract from 180.
58/2 = 29
Answer:
Given a square ABCD and an equilateral triangle DPC and given a chart with which Jim is using to prove that triangle APD is congruent to triangle BPC.
From the chart, it can be seen that Jim proved that two corresponding sides of both triangles are congruent and that the angle between those two sides for both triangles are also congruent.
Therefore, the justification to complete Jim's proof is "SAS postulate"
Step-by-step explanation: