Answer:
1.23×10⁸ m
Explanation:
Acceleration due to gravity is:
a = GM / r²
where G is the universal gravitational constant,
M is the mass of the planet,
and r is the distance from the center of the planet to the object.
When the object is on the surface of the Earth, a = g and r = R.
g = GM / R²
When the object is at height i above the surface, a = 1/410 g and r = i + R.
1/410 g = GM / (i + R)²
Divide the first equation by the second:
g / (1/410 g) = (GM / R²) / (GM / (i + R)²)
410 = (i + R)² / R²
410 R² = (i + R)²
410 R² = i² + 2iR + R²
0 = i² + 2iR − 409R²
Solve with quadratic formula:
i = [ -2R ± √((2R)² − 4(1)(-409R²)) ] / 2(1)
i = [ -2R ± √(1640R²) ] / 2
i = (-2R ± 2R√410) / 2
i = -R ± R√410
i = (-1 ± √410) R
Since i > 0:
i = (-1 + √410) R
R = 6.37×10⁶ m:
i ≈ 1.23×10⁸ m
Cups
teaspoon
tablespoon
liters
milliliters
gallons
pints
tons
inches
Answer:
(7.8) x (9.8 m/s) = 76.44 m/s
during the time he spent falling.
Since his falling speed was zero when he 'stepped' off of the top,
he hit the ground at 76.44 m/s.
That's about 170 miles per hour.
I'll bet he left one serious crater!
I hope this helps too! :D
Explanation:
The height difference is found by
Then the change in potential energy is