Answer:
t=7.33 s
Explanation:
According to Newton's second law:

because we don't want the box to slide, the acceleration has to be zero.

we know that:

Now having the acceleration, we can use the following formula.

Answer:
H = 0.673
Explanation:
given,
side of cubical crate = 0.74
weight of the crate = 600 N
magnitude of force = 330 N
the Horizontal distance of its Center of mass
= 0.74/2
= 0.37
Let the required Height be H
By Balancing the Torques, we get
H x 330 N = 0.37 x 600
330 H = 222
H = 0.673
hence, the height above the floor where force is acting is equal to 0.673 m
Answer:
C. Up, equal to the can's weight
Explanation:
You are camping in the breathtaking mountains if Colorado. You spy an unopened diet soda can floating motionless below the surface of a lake. What is the direction and amount of force the water exerts on it?
A. Zero
B. Down, equal to the can's weight
C. Up, equal to the can's weight
D. Not enough information is given
from the principle of flotation which states that a
When a body displaces a weight of water equal to its own weight, it floats. : A floating object displaces a weight of fluid equal to its own weight. ... Archimedes' principle equates the buoyant force to the weight of the fluid displaced.
the upthrust (this is the upward vertical force exerted on an object in fluid)in the water equals the weight of the body in water it floats.
Answer:
The distance that the honey flowed would be the dependent or outcome variable and the temperature of the honey would be the independent variable.
The dependent variable is what is being measured in an experiment. You can remember it by thinking “it depends on what you’re changing.”
The independent variable in an experiment is what is being changed. You can remember this by thinking “the Independent variable is what I as the scientist change.”
Explanation:
mark me brainliest plz
Answer:
2.47 m
Explanation:
Let's calculate first the time it takes for the ball to cover the horizontal distance that separates the starting point from the crossbar of d = 52 m.
The horizontal velocity of the ball is constant:

and the time taken to cover the horizontal distance d is

So this is the time the ball takes to reach the horizontal position of the crossbar.
The vertical position of the ball at time t is given by

where
is the initial vertical velocity
g = 9.8 m/s^2 is the acceleration of gravity
And substituting t = 2.56 s, we find the vertical position of the ball when it is above the crossbar:

The height of the crossbar is h = 3.05 m, so the ball passes

above the crossbar.