From a balistics pendulum as an example, which is probably where you are at...
Triangles, L = 12m, x_0 = 1.6, we need to find the angle (theta)
sin (theta) = 1.6/12 = 0.1333....
theta = ArcSin(0.1333...) = 0.1337 rad
Then, this is the height that the mass vertically raises in it's arc
y_2 = L-L*cos(theta) = 0.107 m
use y_2 in a kinematic swing...
<span><span>v=sqrt(<span><span>2g<span>y_2)</span></span></span>=1.45m/s</span></span>
Answer:
21 psi
Explanation:
The weight of the car is:
W = mg
W = 1000 kg * 9.8 m/s²
W = 9800 N
Divided by 4 tires, each tire supports:
F = W/4
F = 9800 N / 4
F = 2450 N
Pressure is force divided by area, so:
P = F / A
P = (2450 N) / (0.13 m × 0.13 m)
P ≈ 145,000 Pa
101,325 Pa is the same as 14.7 psi, so:
P ≈ 145,000 Pa × (14.7 psi / 101,325 Pa)
P ≈ 21 psi
Mass of the displaced material. In water it would be the mass of the water that the volume of the ball displaces.
Answer:
<em> 3980.89 ohms</em>
Explanation:
The capacitive reactance is expressed as;

f is the frequency
C is the capacitance of the capacitor
Given
f = 60H
C = C1+C2 (parallel connection)
C = 15μF + 25μF
C = 40μF
C = 
Substitute into the formula:

<em>Hence the total capacitive reactance is 3980.89 ohms</em>
The answer is C. in sort of a way. You can't technically see black matter. However, it is holding the galaxies together.