1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elenna [48]
3 years ago
8

A total charge of 7.5 mC passes through a cross-sectional area of a wire in 0.9 s. What is the current in the wire

Physics
1 answer:
Elan Coil [88]3 years ago
4 0

Answer:

the  current in the wire is  0.008333333  A

Explanation:

The computation of the current in the wire is as follows;

Current in the wire is

= Total charge ÷ cross sectional area of the wire

= 7.5 × 10^-3C ÷ 0.9s

= 0.008333333  A

Hence, the  current in the wire is  0.008333333  A

We simply applied the above formula so that the correct current of the wire could come

And, the same is considerd and relevant too

You might be interested in
8.) If a car moving at 50km/h skids 15m with locked brakes, how far does the same car moving at 100km/h
pantera1 [17]

(8) A car starting with a speed <em>v</em> skids to a stop over a distance <em>d</em>, which means the brakes apply an acceleration <em>a</em> such that

0² - <em>v</em>² = 2 <em>a</em> <em>d</em> → <em>a</em> = - <em>v</em>² / (2<em>d</em>)

Then the car comes to rest over a distance of

<em>d</em> = - <em>v</em>² / (2<em>a</em>)

Doubling the starting speed gives

- (2<em>v</em>)² / (2<em>a</em>) = - 4<em>v</em>² / (2<em>a</em>) = 4<em>d</em>

so the distance traveled is quadrupled, and it would move a distance of 4 • 15 m = 60 m.

Alternatively, you can explicitly solve for the acceleration, then for the distance:

A car starting at 50 km/h ≈ 13.9 m/s skids to a stop in 15 m, so locked brakes apply an acceleration <em>a</em> such that

0² - (13.9 m/s)² = 2 <em>a</em> (15 m) → <em>a</em> ≈ -6.43 m/s²

So the same car starting at 100 km/h ≈ 27.8 m/s skids to stop over a distance <em>d</em> such that

0² - (27.8 m/s)² = 2 (-6.43 m/s²) <em>d</em> → <em>d</em> ≈ 60 m

(9) Pushing the lever down 1.2 m with a force of 50 N amounts to doing (1.2 m) (50 N) = 60 J of work. So the load on the other end receives 60 J of potential energy. If the acceleration due to gravity is taken to be approximately 10 m/s², then the load has a mass <em>m</em> such that

60 J = <em>m g h</em>

where <em>g</em> = 10 m/s² and <em>h</em> is the height it is lifted, 1.2 m. Solving for <em>m</em> gives

<em>m</em> = (60 J) / ((10 m/s²) (1.2 m)) = 5 kg

(10) Is this also multiple choice? I'm not completely sure, but something about the weight of the tractor seems excessive. It would help to see what the options might be.

4 0
3 years ago
A ball is kicked at an angle of 35° with the ground.a) What should be the initial velocity of the ball so that it hits a target
stiks02 [169]

Answer:

a.18.5 m/s

b.1.98 s

Explanation:

We are given that

\theta=35^{\circ}

a.Let v_0 be the initial velocity of the ball.

Distance,x=30 m

Height,h=1.8 m

v_x=v_0cos\theta=v_0cos35

v_y=v_0sin\theta=v_0sin35

x=v_0cos\theta\times t=v_0cos35\times t

t=\frac{30}{v_0cos35}

h=v_yt-\frac{1}{2}gt^2

Substitute the values

1.8=v_0sin35\frac{30}{v_0cos35}-\frac{1}{2}(9.8)(\frac{30}{v_0cso35})^2

1.8=30tan35-\frac{6574.6}{v^2_0}

\frac{6574.6}{v^2_0}=21-1.8=19.2

v^2_0=\frac{6574.6}{19.2}

v_0=\sqrt{\frac{6574.6}{19.2}}=18.5 m/s

Initial velocity of the ball=18.5 m/s

b.Substitute the value then we get

t=\frac{30}{18.5cos35}

t=1.98 s

Hence, the time for the ball to reach the target=1.98 s

7 0
3 years ago
In a tug of war, when one team is pulling with a force of 85 N and the other 40 N, what is the net
olya-2409 [2.1K]
85 N - 40 N = 45 N
And depending on direction the greater force is being pulled towards
4 0
3 years ago
water in a cup and a kettle can have the same temperature even though the quantities are different . give reasons​
jekas [21]

Answer:

The reason is because both are exposed to a virtually infinite heat sink, due to the virtually infinite mass  and of the surrounding environment, compared to the sizes of either the cup or the kettle such that the equilibrium temperature, T_{(equilibrium)} reached is the same for both the cup and the kettle as given by the relation;

\infty M_{(environ)} \times  c_{(environ)} \times (T_2 - T_1) = m_{1} \times  c_{(water)} \times (T_3 - T_2) + m_{2} \times  c_{(water)} \times (T_4 - T_2)

Due to the large heat sink, T₂ - T₁ ≈ 0 such that the temperature of the kettle and that of the cup will both cool to the temperature of the environment

Explanation:

4 0
4 years ago
car 2 has a mass of 150 kg and moves westward towards car 3 at a velocity of 2.2 m/s. car 3 has a mass of 265 kg and moves eastw
sergejj [24]

Answer:

The force of car 3 on car 2 ≈ 1810.82 N

Explanation:

The equation for the change in momentum of the two cars are;

Conservation of linear momentum

150( 2.2 - v) = 265(1.5-v)

150 × 2.2 - 265×1.5 = (150+265)v

150 × 2.2 - 265×1.5 = -67.5 = 415×v

∴ v = -67.5/415 = -0.1627 m/s West = 0.1627 m/s East

The impulse of the net force is the amount of momentum change experienced given by the equation;

Impulse force = m \times  v_f - m \times  v_0

Where;

v_f = The final velocity

v_0 = The initial velocity

For the the 265 kg mass, we have;

v_f = 0.1627 m/s

v_0 = 1.5 m/s

Which gives the impulse a s F×Δt =  265×0.1627 - 265×1.5 = -354.38 kg·m/s

The change in kinetic energy of the collision = 1/2×265×(0.1627^2 - 1.5^2) =-294.62 J

Whereby the distance moved in one second is 0.1627 m, we have;

Work done = Force × Distance = Force × 0.1627 = 294.62

Force = 294.62/0.1627 = 1810.82 N.

8 0
3 years ago
Other questions:
  • If you cannot get a chair to move across the floor, it is because ___ friction opposes your push.
    8·1 answer
  • Express the vector R<br> B<br> in terms of A, B, C, and Ď, the edges of a<br> parallelogram.
    5·1 answer
  • 2 differences between calorimeter and thermometer ?
    9·1 answer
  • Matter is anything that...
    6·2 answers
  • Define the unit of current​
    10·1 answer
  • The storage coefficient of a confined aquifer is 6.8x10-4 determined by a pumping test. The thickness of the aquifer is 50 m and
    9·1 answer
  • Under the assumption that the beam is a rectangular cantilever beam that is free to vibrate, the theoretical first natural frequ
    6·1 answer
  • n open rectangular tank is filled to a depth of 2 m with water (density 1000 kg/m3). On top of the water there is a 1 m deep lay
    14·1 answer
  • A car accelerates at a rate of 8.8 m/s2 with a force from the tires of 11,968 N.
    12·1 answer
  • If a truck loses 5610 J of energy as it slows down due to an external force of 425 N, what distance will it have moved after the
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!