Taking the vertical component of the displacement
1.1 - 0.2 = 0.9 mile
The horizontal component of the displacement
-0.3 mile
The magnitude of the displacement is
√[ (0.9)² + (-0.3) ] = 0.95 mile
The direction is
θ = tan-1 (-0.3/0.9)
θ = 161.57 degrees.
Answer:
a. The station is rotating at 
b. the rotation needed is 
Explanation:
We know that the centripetal acceleration is

where
is the rotational speed and r is the radius. As the centripetal acceleration is feel like an centrifugal acceleration in the rotating frame of reference (be careful, as the rotating frame of reference is <u>NOT INERTIAL,</u> the centrifugal force is a fictitious force, the real force is the centripetal).
<h3>a. </h3>
The rotational speed is :




Knowing that there are
in a revolution and 60 seconds in a minute.


<h3>b. </h3>
The rotational speed needed is :




Knowing that there are
in a revolution and 60 seconds in a minute.


Answer: Depends
Explanation:
Depends on how much the diver weighs.
Answer:
= 15.57 N
= 2.60 N
= 16.98 N
The mass of the bag is the same on the three planets. m=1.59 kg
Explanation:
The weight of the sugar bag on Earth is:
g=9.81 m/s²
m=3.50 lb=1.59 kg
=m·g=1.59 kg×9.81 m/s²= 15.57 N
The weight of the sugar bag on the Moon is:
g=9.81 m/s²÷6= 1.635 m/s²
=m·g=1.59 kg× 1.635 m/s²= 2.60 N
The weight of the sugar bag on the Uranus is:
g=9.81 m/s²×1.09=10.69 m/s²
=m·g=1.59 kg×10.69 m/s²= 16.98 N
The mass of the bag is the same on the three planets. m=1.59 kg
Answer:
your answer is B. The velocity could be in any direction, but the acceleration is in the direction of the resultant force