For this problem we use the wave equation. It is expressed as the speed (c) is equal to the product of frequency (f) and wavelength (v).
c = v x f
We know the wavelength of the an red light which is 6.5 x 10^-7 m. Now, we solve for the wavelength of the unknown wave to see the relation between the two waves.
2.998 X 10^8 = 5.3 X 10^15 X v
v = 2.998 X 10^8 / (5.3 X 10^15) = 5.657 X 10^-8 m
Therefore, the wavelength of the unknown wave is less than the wavelength of the red light.
Answer:
the mass number decreases by 4 and the atomic number decreases by 2
Answer:
4.42x10⁻¹⁹ J/molecule
Explanation:
At a double bond, there's sigma and a pi bond, and at a single bond, there's only a sigma bond. Thus, if the energy to break both sigma and pi is 614 kJ/mol, and the energy to break only the sigma bond is 348 kJ/mol, the energy to break only the pi bond is:
E = 614 - 348 = 266 kJ/mol
Knowing that 1 kJ = 1000 J, E = 266,000 J/mol
By Avogadro's number, 1 mol = 6.02x10²³ molecules, thus:
E = 266,000 J/mol * 1mol/6.02x10²³ molecules
E = 4.42x10⁻¹⁹ J/molecule