1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitrij [34]
3 years ago
15

Why do transitioning electrons release or absorb energy?

Chemistry
2 answers:
marissa [1.9K]3 years ago
8 0

Answer:

When elements are heated or energized, their electrons absorb energy and transition to a higher energy level.

Tom [10]3 years ago
6 0

Answer:

when an electron jumped into higher energy level  from lower energy level it must absorbed the energy because with small amount of energy it can not jumped into higher energy level.

when it came back to lower energy level it release extra energy.

Explanation:

The electron is jumped into higher level and back into lower level by absorbing and releasing the energy.

The process is called excitation and de-excitation.

Excitation:

When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.  For example if electron jumped from K to L it must absorbed the energy which is equal the energy difference of these two level. The excited electron thus move back to lower energy level which is K by releasing the energy because electron can not stay longer in higher energy level and comes to ground state.

De-excitation:

When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum .

You might be interested in
1.) The process for converting ammonia to nitric acid involves the conversion of NH3 to
Firdavs [7]

Answer:

a) 1.39 g ; b) O₂ is limiting reactant,  NH₃ is excess reactant; c) 0.7 g

Explanation:

We have the masses of two reactants, so this is a limiting reactant problem.

We will need a balanced equation with masses, moles, and molar masses of the compounds involved.

1. Gather all the information in one place with molar masses above the formulas and masses below them.  

MM:        17.03    32.00     30.01

              4NH₃  +  5O₂ ⟶ 4NO + 6H₂O

Mass/g:    1.5        1.85

2. Calculate the moles of each reactant  

\text{moles of NH}_{3} = \text{1.5 g NH}_{3} \times \dfrac{\text{1 mol NH}_{3}}{\text{17.03 g NH}_{3}} = \text{0.0881 mol NH}_{3}\\\\\text{moles of O}_{2} = \text{1.85 g O}_{2} \times \dfrac{\text{1 mol O}_{2}}{\text{32.00 g O}_{2}} = \text{0.057 81 mol O}_{2}

3. Calculate the moles of NO we can obtain from each reactant

From NH₃:

The molar ratio is 4 mol NO:4 mol NH₃

\text{Moles of NO} = \text{0.0881 mol NH}_{3} \times \dfrac{\text{4 mol NO}}{\text{4 mol NH}_{3}} = \text{0.0881 mol NO}

From O₂:

The molar ratio is 4 mol NO:5 mol O₂

\text{Moles of NO} =  \text{0.057 81 mol O}_{2}\times \dfrac{\text{4 mol NO}}{\text{5 mol O}_{2}} = \text{0.046 25 mol NO}

4. Identify the limiting and excess reactants

The limiting reactant is O₂ because it gives the smaller amount of NO.

The excess reactant is NH₃.

5. Calculate the mass of NO formed

\text{Mass of NO} = \text{0.046 25 mol NO}\times \dfrac{\text{30.01 g NO}}{\text{1 mol NO}} = \textbf{1.39 g NO}

6. Calculate the moles of NH₃ reacted

The molar ratio is 4 mol NH₃:5 mol O₂

\text{Moles reacted} = \text{0.057 81 mol O}_{2} \times \dfrac{\text{4 mol NH}_{3}}{\text{5 mol O}_{2}} = \text{0.046 25 mol NH}_{3}

7. Calculate the mass of NH₃ reacted

\text{Mass reacted} = \text{0.046 25 mol NH}_{3} \times \dfrac{\text{17.03 g NH}_{3}}{\text{1 mol NH}_{3}} = \text{0.7876 g NH}_{3}

8. Calculate the mass of NH₃ remaining

Mass remaining = original mass – mass reacted = (1.5 - 0.7876) g = 0.7 g NH₃

8 0
3 years ago
Balancing equations<br> I'll give brainliest.
wel

Answer:

You should follow these steps:

Count each type of atom in reactants and products.

Place coefficients, as needed, in front of the symbols or formulas to increase the number of atoms or molecules of the substances.

Repeat steps 1 and 2 until the equation is balanced.

Explanation:

7 0
2 years ago
Consider the unbalanced equation for the oxidation of butene. C4H8 + 6O2 Right arrow. CO2 + H2O For each molecule of C4H8 that r
antiseptic1488 [7]
Answer is C4H8 + 6O2 —> 4CO2 + 4H2O
4 0
2 years ago
The chemical formula for table sugar is C 12 H 11 O 22 . What can you tell from this formula?
Paraphin [41]
The the last one, but isn't it c6h12o6?
8 0
3 years ago
KFell Fe"(CN), + e + Nat → KNaFe'Fe(CN)6
Alinara [238K]

Answer:

Most common oxidation states: +2, +3

M.P. 1535º

B.P. 2750º

Density 7.87 g/cm3

Characteristics: Iron is a gray, moderately active metal.

Characteristic reactions of Fe²⁺ and Fe³⁺

The [Fe(H2O)6]3+ ion is colorless (or pale pink), but many solutions containing this ion are yellow or amber-colored because of hydrolysis. Iron in both oxidation states forms many complex ions.

Aqueous Ammonia

Aqueous ammonia reacts with Fe(II) ions to produce white gelatinous Fe(OH)2, which oxidizes to form red-brown Fe(OH)3:

Fe2+(aq)+2NH3(aq)+3H2O(l)↽−−⇀Fe(OH)2(s)+2NH+4(aq)(1)

Fe3appt.gif

Aqueous ammonia reacts with Fe(III) ions to produce red-brown Fe(OH)3:

Fe3+(aq)+3NH3(aq)+3H2O(l)↽−−⇀Fe(OH)3(s)+3NH+4(aq)(2)

Fe3bppt.gif

Both precipitates are insoluble in excess aqueous ammonia. Iron(II) hydroxide quickly oxidizes to Fe(OH)3 in the presence of air or other oxidizing agents.

Sodium Hydroxide

Sodium hydroxide also produces Fe(OH)2 and Fe(OH)3 from the corresponding oxidation states of iron in aqueous solution.

Fe2+(aq)+2OH−(aq)↽−−⇀Fe(OH)2(s)(3)

Fe4appt.gif

Fe3+(aq)+3OH−(aq)↽−−⇀Fe(OH)3(s)(4)

Fe4bppt.gif

Neither hydroxide precipitate dissolves in excess sodium hydroxide.

Potassium Ferrocyanide

Potassium ferrocyanide will react with Fe3+ solution to produce a dark blue precipitate called Prussian blue:

K+(aq)+Fe3+(aq)+[Fe(CN)6]4−(aq)↽−−⇀KFe[Fe(CN)6](s)(5)

Fe5a1ppt.gif

With Fe2+ solution, a white precipitate will be formed that will be converted to blue due to the oxidation by oxygen in air:

2Fe2+(aq)+[Fe(CN)6]4−(aq)↽−−⇀Fe2[Fe(CN)6](s)(6)

Fe5a2ppt.gif

Many metal ions form ferrocyanide precipitates, so potassium ferrocyanide is not a good reagent for separating metal ions. It is used more commonly as a confirmatory test.

Potassium Ferricyanide

Potassium ferricyanide will give a brown coloration but no precipitate with Fe3+. With Fe2+, a dark blue precipitate is formed. Although this precipitate is known as Turnbull's blue, it is identical with Prussian blue (from Equation 5).

K+(aq)+Fe+2(aq)+[Fe(CN)6]3−(aq)↽−−⇀KFe[Fe(CN)6](s)(7)

Fe5b.gif

Potassium Thiocyanate

KSCN will give a deep red coloration to solutions containing Fe3+:

Fe+3(aq)+NCS−(aq)↽−−⇀[FeNCS]+2(aq)(8)

Fe5cppt.gif

No Reaction

Cl−, SO2−4

7 0
3 years ago
Other questions:
  • Converting forestland to urban areas through urban development could lead to which of the following? A. Less land available for
    8·2 answers
  • What is the number of moles of hydrogen that is needed to produce 0.253 mol of water
    15·1 answer
  • What is the product of radioactive decay He called?
    7·1 answer
  • The molarity of a 2 liter aqueous solution that contains 222.2 grams of dissolved calcium chloride ( CaCl2), expressed with two
    11·1 answer
  • How many moles of water are produced from 13.35 mol of oxygen?
    12·1 answer
  • What is the name of the monomer that polymerizes to form polymethylmethacrylate
    5·1 answer
  • Which best describes a radioactive isotope?
    7·1 answer
  • In a molecule of calcium sulfide, calcium has two valence electron bonds, and a sulfur atom has six valence electrons. How many
    7·1 answer
  • If you want to form a kinetic enolate, you want to:______.A. use a strong, non-nucleophilic base such as LDA.B. use a protic sol
    9·1 answer
  • What can you conclude about the relationship between height and energy?​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!