Answer:
0.1357 M
Explanation:
(a) The balanced reaction is shown below as:

(b) Moles of
can be calculated as:
Or,
Given :
For
:
Molarity = 0.1450 M
Volume = 10.00 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 10×10⁻³ L
Thus, moles of
:
Moles of
= 0.00145 moles
From the reaction,
1 mole of
react with 2 moles of NaOH
0.00145 mole of
react with 2*0.00145 mole of NaOH
Moles of NaOH = 0.0029 moles
Volume = 21.37 mL = 21.37×10⁻³ L
Molarity = Moles / Volume = 0.0029 / 21.37×10⁻³ M = 0.1357 M
Answer:
- NaClO₃ > KBr > KNO₃ > NaCl.
Explanation:
The attached file contains the graph with the solubility curves for the four substances, KNO₃, NaClO₃, KBr, NaCl.
To determine the solubility of each salt at a certain temperature, you read the temperature on the horizontal axis, labeled Temperature (ºC), and move upward up to intersecting the curve of the corresponding salt. Then, move horizontally up to insersceting the vertical axis, labeled Solubility (g/100g of H₂O), to read the solubility.
The higher the reading on the vertical axis, the higher the solubility.
The red vertical line that I added is at a temperature of 40ºC.
The number in blue indicate the order in which the solubility curves are intersected at that temperature:
- 4: NaCl: this is the lowest solubility
- 3: KNO₃: this is the second lowest solubility
- 2: KBr: this is the third lowest solubility
- 1: NaClO₃: this is the highest solubility.
Thus, the rank, from most soluble to least soluble is:
- NaClO₃ > KBr > KNO₃ > NaCl.
Answer:
<h2>
0.50 m/s</h2><h2>
</h2>
Explanation:
Velocity = distance over time
where distance = 5.20 m
time = 10.4 s.
velocity = <u> 5.20 m </u>
10.4 s.
= 0.50 m/s
<span>
You can do it on the icing of roads, reverse osmosis for desalination of water, dissolved CO2 in soda cans, osmotic pressure involving blood vessels and IV solutions, etc.</span>