The balanced equation for the above reaction is as follows;
CaCO₃ + 2HCl ----> CaCl₂ + H₂O + CO₂
stoichiometry of CaCO₃ to HCl is 1:2
molar volume states that 1 mol of any gas occupies a volume of 22.4 L at STP.
volume of 22.4 L occupied by 1 mol
therefore 0.56 L occupied by - 0.56 L / 22.4 L/mol = 0.025 mol
number of HCl moles reacted - 0.025 mol
2 mol of HCl reacts with 1 mol of CaCO₃
therefore 0.025 mol reacts with - 0.025/2 = 0.0125 mol
mass of CaCO₃ required - 0.0125 mol x 100 g/mol = 1.25 g
1.25 g of CaCO₃ is required
Answer:
A) Devices that transfer kinetic energy have a source of power that is in motion
Kinetic energy is the energy in motion, as such, a device that transfers kinetic energy transfers the energy the power source has into other energy forms
B) Kerosene does not easily cold start like diesel which can burn after compression
C) The first law of thermodynamics states that energy is conserved and it can neither be created nor destroyed, but can be changed from one form to another.
Therefore, when energy is not available in a given location or body, it cannot be obtained from that body or location
Explanation:
Hi!
The correct options would be:
1. Cathode - <em>reduction</em>
The cathode is the negatively charged electrode, and so has an excess of electrons. Cations (positively charged ions) are attracted to the cathode, and gain electrons to acquire a neutral charge. The process in which a gain of electron occurs is called reduction.
2. Anode - <em>oxidation</em>
The opposite occurs at the anode which is positively charged and attracts negatively charged ions, anions. These anions lose their electrons at the anode to acquire a neutral charge, and the process involving loss of electrons is known as oxidation.
3. Salt Bridge - <em>ion transport </em>
Salt bridge is a physical connection between the the anodic and cathodic half cells in an electrochemical cell and is a pathway that facilitates the flow of ions back and forth these half cells. Salt bridge is involved in maintaining a neutral condition in the electrochemical cells, and its absence would result in the accumulation of positive charge in the anodic cell, and negative charge in the cathodic cell.
4. Wire - <em>electron transport </em>
Wires have a universal role of being a pathway for the transport of electrons in circuit. This role is also the same in the wires involved in an electrochemical cells where they are used to transport electrons from the anodic half cell, and this electron transport results in the generation of electricity in the internal circuit of the electrochemical cell.
Hope this helps!