A camera lens (also known as photographic lens or photographic objective) is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.
I would say C but I’m not complete sore
Answer:
The answer to your question is : 521.8 m
Explanation:
Data:
Different heights
Time first object (tfo) = 10.7 s
Time second object (tso)= 14.8 s
Initial speed of both objects(vo) = 0 m/s
a = 9.81 m/s²
Formula:
h = vot + 1/2 (a)(t)² but vo = 0 so, h = 1/2 (a)(t)²
Then, height fo h = 1/2 (9.81)(10.7)² = 561.6 m
height so h = 1/2(9,81)(14.8)² = 1074.4 m
Difference in their heights = 1074.4 m - 561.6 m = 521.8 m
Please look at the attached awesome drawing.
Both answers are there.
Answer:
3) C
4 D
5) C
Explanation:
3) given that
Initial distance of the screen = 100cm
Initial area = 150 cm^2
Final distance = 200 cm
The intensity of light is inversely proportional to the square of the distance. That is
Intensity of light I = 1/d2
And also I = P/A
1/d^2 = P/A
P = A/d^2
P1 = P2
150/100 = A/200
1.5 = A/200
A = 1.5 × 200
A = 300 cm^2
4.) Light is projected onto a screen 75.0 cm from a light source. The light intensity = 4436 lux
If the screen is moved from 75.0 cm to 150. cm, the light sensor reading will be
Using inverse square law
I = 1/d^2
I×d^2 = constant. Therefore,
4436 × 75^2 = I × 150^2
I = 24952500/22500
I = 1109 lux
5.) We can express the relationship between luminosity, brightness, and distance with a simple formula.
As we tilt the serene the area of light decreases and makes the light more concentrated.