Both c and a could be right but I am steering more towards a.
Answer: A. force with which air rushes across the vocal folds
Explanation:
The human voice is produced in the larynx, whose essential part is the glottis. This is how the air coming from the lungs is forced during expiration through the glottis, making its two pairs of vocal folds to vibrate.
It should be noted that this process can be consciously controlled by the person who speaks (or sings), since the variation in the intensity of the sound of the voice depends on the strength of the breath.
Answer:
490.5 N
Explanation:
Coefficient of friction is 0.5 since friction force is set to halfway between none and lots. Minimum force is given by multiplying the weight and coefficient of friction
F= kN where k is coefficient of friction while N is weight. Also, N=mg where m is mass and g is acceleration due to gravity.
F=kmg=0.5*100*9.81=490.5 N
Let at any instant of time the speed is vo and the angle made by the bike with the horizontal is given
now we have
component of speed in x direction given as

component of speed in y direction will be

now from above two equations we can say that here
= angle with the horizontal at any instant
and since here it is a sine curve so we know that

so we have slope of graph

The value of cos θ in the given figure is 0.98.
<h3>
What is cosine of an angle?</h3>
The cosine of an angle is defined as the sine of the complementary angle.
The complementary angle equals the given angle subtracted from a right angle, 90.
cos θ = sin(90 - θ)
For example, if the angle is 30°, then its complement is 60°
cos 30 = sin(90 - 30)
cos 30 = sin 60
0.866 = 0.866
<h3>Cosine of an angle with respect to sides of a right triangle</h3>
cos θ = adjacent side / hypotenuse side
adjacent side of the given right triangle is calculated as follows;
adj² = 10² - 2²
adj² = 100 - 4
adj² = 96
adj = √96
adj = 9.8
cos θ = 9.8/10
cos θ = 0.98
Thus, the value of cos θ in the given figure is 0.98.
Learn more about cosine of angles here: brainly.com/question/23720007
#SPJ1