1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bixtya [17]
3 years ago
7

A crane does 9,500 J of work to lift a crate straight up using a force of 125 N. How high does the crane lift the crate?

Physics
1 answer:
Bad White [126]3 years ago
7 0
Work is Force x Distance.  9500J=125N*d.  d=9500J/125N=76m
You might be interested in
Determine your Maximum Heart Rate (MHR) by subtracting your age from 220.
Oduvanchick [21]

Are you joking? Why is this on here?

4 0
3 years ago
Interactive Solution 6.39 presents a model for solving this problem. A slingshot fires a pebble from the top of a building at a
mariarad [96]

(a) 29.8 m/s

To solve this problem, we start by analyze the vertical motion first. This is a free fall motion, so we can use the following suvat equation:

v_y^2 - u_y^2 = 2as

where, taking upward as positive direction:

v_y is the final vertical velocity

u_y = 0 is the initial vertical velocity (zero because the pebble is launched horizontally)

a=g=-9.8 m/s^2 is the acceleration of gravity

s = -25.0 m is the displacement

Solving for vy,

v_y = \sqrt{u^2+2as}=\sqrt{0+2(-9.8)(-25)}=-22.1 m/s (downward, so we take the negative solution)

The pebble also have a horizontal component of the velocity, which remains constant during the whole motion, so it is

v_x = 20.0 m/s

So, the final speed of the pebble as it strikes the ground is

v=\sqrt{v_x^2+v_y^2}=\sqrt{20.0^2+(-22.1)^2}=29.8 m/s

(b) 29.8 m/s

In this case, the pebble is launched straight up, so its initial vertical velocity is

u_y = 20.0 m/s

So we can find the final vertical velocity using the same suvat equation as before:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

The horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

(c) 29.8 m/s

This case is similarly to the previous one: the only difference here is that the pebble is launched straight down instead than up, therefore

u_y = -20.0 m/s

Using again the same suvat equation:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(-20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

As before, the horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

We notice that the final value of the speed is always the same in all the three parts, so it does not depend on the direction of launching. This is due to the law of conservation of energy: in fact, the initial mechanical energy of the pebble (kinetic+potential) is the same in all three cases (because the height h does not change, and the speed v does not change either), and the kinetic energy gained during the fall is also the same (since the pebble falls the same distance in all 3 cases), therefore the final speed must also be the same.

7 0
3 years ago
A water molecule consists of an oxygen atom with two hydrogen atoms bound to it. The angle between the two bonds is 106◦ . If ea
balu736 [363]

Answer:

easy 16

Explanation:

because i love jesus

3 0
3 years ago
A powerful motorcycle can produce an acceleration of 3.50 m/s2 while traveling at 90.0 km/h. At that speed the forces resisting
IrinaK [193]

Answer:1265 N

Explanation:

Given

acceleration of motorcycle \left ( a\right )=3.5 m/s^2

Velocity \left ( v\right )=90 km/h\approx 25m/s

Air friction and Friction\left ( f\right )=425 N

mass of the motorcycle with rider\left ( m\right )=240 Kg

Applying Forces on motorcycle

F_{engine}-f=ma

F_{engine}=f+ma

F_{engine}=425+240\left ( 3.5\right )

F_{engine}=425+840=1265 N

5 0
3 years ago
A NASA satellite has just observed an asteroid that is on a collision course with the Earth. The asteroid has an estimated mass,
Citrus2011 [14]

Answer:

v = 7934.2 m/s

Explanation:

Here the total energy of the Asteroid and the Earth system will remains conserved

So we will have

-\frac{GMm}{r} + \frac{1}{2}mv_0^2 = -\frac{GMm}{R} + \frac{1}{2}mv^2

now we know that

v_0 = 660 m/s

M = 5.98 \times 10^{24} kg

m = 5 \times 10^9 kg

r = 4 \times 10^9 m

R = 6.37 \times 10^6 m

now from above formula

GMm(\frac{1}{R} - \frac{1}{r}) + \frac{1}{2}mv_0^2 = \frac{1}{2}mv^2

now we have

2GM(\frac{1}{R} - \frac{1}{r}) + v_0^2 = v^2

now plug in all data

2(6.67 \times 10^{-11})(5.98 \times 10^{24})(\frac{1}{6.37 \times 10^6} - \frac{1}{4 \times 10^9}) + (660)^2 = v^2

v = 7934.2 m/s

5 0
3 years ago
Other questions:
  • An airplane flies 33 m/s due east while experiencing a tailwind
    13·1 answer
  • A transverse wave is found to have a vertical distance of 4 cm from a trough to a crest, a frequency of 12 Hz, and a horizontal
    5·1 answer
  • What is electricity? Why does it happen?
    5·2 answers
  • The _____ is the process scientists use to conduct research, which includes a continuing cycle of exploration, critical thinking
    13·2 answers
  • when an ambulance drives by your house with sirens blaring, the sound waves of the sirens are (space) as it approaches and (spac
    12·1 answer
  • An object resistance to any change in its motion is tye _ of the object
    9·2 answers
  • Which two factors affect the size of the gravitational field?
    8·1 answer
  • The __________________ is the entire range of Electromagnetic Waves.
    13·1 answer
  • Please help!!!!!!!!
    15·1 answer
  • A car enters the freeway with a speed of 6.4 m/s and accelerates uniformly for 3/2 km in 3.5 min. How fast (in m/s) is the car m
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!