<span> In </span>transverse waves<span>, </span>particles<span> of the</span>medium<span> vibrate </span>to<span> and from in a direction perpendicular </span>to<span> the direction of energy transport. </span>
Answer:
B) Power
Explanation:
The power is defined by the following equation:
P = W / t
where:
W = work = Force * Distance = [Newton] * [meter]
t = time = seconds
The units for work are give en Newton per second, which is equal to Joules
And for power the unit used commonly is Watts, therefore:
Watts = (Joule/second)
Answer:
C) upward
Explanation:
The problem can be solved by using the right-hand rule.
First of all, we notice at the location of the negatively charged particle (above the wire), the magnetic field produced by the wire points out of the page (because the current is to the right, so by using the right hand, putting the thumb to the right (as the current) and wrapping the other fingers around it, we see that the direction of the field above the wire is out of the page).
Now we can apply the right hand rule to the charged particle:
- index finger: velocity of the particle, to the right
- middle finger: direction of the magnetic field, out of the page
- thumb: direction of the force, downward --> however, the charge is negative, so we must reverse the direction --> upward
Therefore, the direction of the magnetic force is upward.
Answer:
W = F * s
Work done equals applied force * distance traveled
Apparent weight = M g (1 - sin θ) since some of applied force will lighten sled
μ = coefficient of kinetic friction
F cos θ = force applied to motion of sled
s = distance traveled
[μ M g (1 - sin θ)] cos θ * s = work done in moving sled
Note that F = μ M g if applied force is in the horizontal direction