<span> purity of the substance is usually the main error (for example: water with impurities will have m.p. less than 273K or 0 degree celcius while it's b.p. will be greater than 373K or 100 degree celcius). </span>
<span>-> air/ room temperature (it takes longer to cook in mountains and shorter at beaches) </span>
<span>-> parallax error (error by determining the meniscus of the thermometer) </span>
<span>and many more..</span>
Answer:
Your answer is cells. Hope this helps!
(the heat bomb calorimeter gained)=(the heat material A gave)
r.h.s=25.57 kJ/⁰C * (26.80-24.33)= 63.16 kJ
2.741g of material A made 63.16kJ
the heat of combustion per gram = 63.16/2.741 kJ/g =24.04kJ/g
It is false that 1 mole of nacl(s) has a greater entropy than 1 mole of nacl (aq).
this is because nacl(aq) is in aqueous state while nacl(s) is in solid state. Nacl(aq) has greater entropy than nacl(s) because in
aqueous state their is increase in entropy. the entropy of the two ions in water has greater entropy than the solid nacl.
Answer:
Acid base titration curves shows the pH at equivalence point
Explanation:
Since the images were not shown, I will proceed to give a general description of the following acid-base titration curves:
In a strong acid-strong base titration, the acid and base will react to form a neutral solution. At the equivalence point of the reaction, hydronium (H+) and hydroxide (OH-) ions will react to form water, leading to a pH of 7.
The titration curve reflects the strengths of the corresponding acid and base. If one reagent is a weak acid or base and the other is a strong acid or base, the titration curve is irregular, and the pH shifts less with small additions of titrant near the equivalence point.
Polyprotic acids are able to donate more than one proton per acid molecule, in contrast to monoprotic acids that only donate one proton per molecule. In the titration curve of a polyptotic acid and a strong base, The curve starts at a higher pH than a titration curve of a strong base. There is always a steep climb in pH before the first midpoint. Gradually, the pH increases until it passes the midpoint; Right before the equivalence point there is a very sharp increase in pH.