Answer:
0.147 mol
Explanation:
Step 1: Calculate the volumetric concentration (Cv)
We will use the following expression.
Cv = Cg × ρ
Cv = 98.0 g%g × 1.84 g/mL = 180 g%mL
Step 2: Calculate the molarity of sulfuric acid
We will use the following expression.
M = mass solute / molar mass solute × liters of solution
M = 180 g / 98.08 g/mol × 0.100 L = 18.4 M
Step 3: Calculate the moles of solute in 8.00 mL of solution
8.00 × 10⁻³ L × 18.4 mol/L = 0.147 mol
In lower temperatures, the molecules of real gases tend to slow down enough that the attractive forces between the individual molecules are no longer negligible. In high pressures, the molecules are forced closer together- as opposed to the further distances between molecules at lower pressures. This closer the distance between the gas molecules, the more likely that attractive forces will develop between the molecules. As such, the ideal gas behavior occurs best in high temperatures and low pressures. (Answer to your question: C) This is because the attraction between molecules are assumed to be negligible in ideal gases, no interactions and transfer of energy between the molecules occur, and as temperature decreases and pressure increases, the more the gas will act like an real gas.
Make sure the equation is always balanced first. (It is balanced for this question already) 6.022 x 10^23 is Avogadro’s number. In one mole of anything there is always 6.022 x 10^23 molecules, formula units, atoms. For one mol of an element/ compound use molar mass (grams).
Multiply everything on the top = 8.61x10^47
Multiple everything on bottom= 1.20x10^24
Divide top and bottom = 7.15x10^23
Answer: 7.15x10^23 mol SO2
Answer: will have a greater partial charge.
Explanation:
A polar covalent bond is defined as the bond which is formed when there is a low difference of electronegativities between the atoms, thus resulting in charge difference. Example:
Non-polar covalent bond is defined as the bond which is formed when there is no difference of electronegativities between the atoms and thus there is no charge difference. Example:
Ionic bond is formed when there is complete transfer of electron from a highly electropositive metal to a highly electronegative non metal. The electronegative difference between the elements is high. The charges on cation and anion neutralise each other. Example:
Thus as will have greater partial charge.