Answer:
a. 0.182
b. 1.009
c. 1.819
Explanation:
Henderson-Hasselbach equation is:
pH = pKa + log [salt / acid]
Let's replace the formula by the given values.
a. 3 = 3.74 + log [salt / acid]
3 - 3.74 = log [salt / acid]
-0.74 = log [salt / acid]
10⁻⁰'⁷⁴ = 0.182
b. 3.744 = 3.74 + log [salt / acid]
3.744 - 3.74 = log [salt / acid]
0.004 = log [salt / acid]
10⁰'⁰⁰⁴ = 1.009
c. 4 = 3.74 + log [salt / acid]
4 - 3.74 = log [salt / acid]
0.26 = log [salt / acid]
10⁰'²⁶ = 1.819
I am pretty sure the answer is . But I might be wrong.
Answer:
114 kPa
Explanation:
By Bernoulli's equation when a fluid flows steadily through a pipe:
P + ρ*g*y + v² = constant in the pipe, where P is the pressure, ρ is the density of the fluid, g is the gravity acceleration (9.8 m/s²), y is the high, and v the velocity.
By the continuity equation, the liquid flow must be constant in the pipe, and then:
A1*v1 = A2*v2
Where A is the area, v is the velocity, 1 is the point 1, and 2 the point 2 in the pipe. The are is the circle area: π*(d/2)². So:
π*(0.105/2)²*9.91 = π*(0.167/2)²*v2
0.007v2 = 0.027
v2 = 3.9 m/s
Then:
P1 + ρ*g*y1 + v1² = P2 + ρ*g*y2 + v2²
ρ*g*y1 - ρ*g*y2 + v1² - v2² = P2 - P1
ρ*g*Δy + v1² - v2² = ΔP
ΔP = 1290*9.8*9.01 + 9.91² - 3.9²
ΔP = 113,987.42 Pa
ΔP = 114 kPa
<span>Grams of solute per 100 grams of water</span>
Answer:
Most of the food energy that enters a trophic level is "lost" as heat when it is used by organisms to power the normal activities of life. Thus, the higher the trophic level on the pyramid, the lower the amount of available energy.
Explanation: