i will ans the 2nd part first:
heat sources 4 homes: those wuld be renewable resources that generate heat. They include geothermal, solar water-heating and bio-mass.
primarily produce electricity: those wuld be something that is big like a dam for hydroelectric, wind turbine for electric generation, and solar farm for electricity.
Answer:
remove product
Explanation:
Removing the product will always shift the equilibrium to the right. This is based on the Le Chatelier's principle which states that "if any of the conditions of a system in equilibrium is changed, the system will adjust itself in order to annul the effect of the change".
- If a system at equilibrium is disturbed, by changing the concentration of one of the substances all the concentrations will change until a new equilibrium point is reached.
- Removing the product will increase the concentration of the species on the left hand side, the equilibrium will shift to the right.
Answer:
43.0 kJ
Explanation:
The free energy (ΔG) measures the total energy that is presented in a thermodynamic system that is available to produce useful work, especially at thermal machines. In a reaction, the value of the variation of it indicates if the process is spontaneous or nonspontaneous because the free energy intends to decrease, so, if ΔG < 0, the reaction is spontaneous.
The standard value is measured at 25°C, 298 K, and the value of free energy varies with the temperature. It can be calculated by the standard-free energy of formation (G°f), and will be:
ΔG = ∑n*G°f products - ∑n*G°f reactants, where n is the coefficient of the substance in the balanced reaction.
By the balanced reaction given:
2NOCl(g) --> 2NO(g) + Cl2(g)
At ALEKS Data tab:
G°f, NOCl(g) = 66.1 kJ/mol
G°f, NO(g) = 87.6 kJ/mol
G°f, Cl2(g) = 0 kJ/mol
ΔG = 2*87.6 - 2*66.1
ΔG = 43.0 kJ
Answer:
% of n-propyl chloride = 43.48 %
Explanation:
There are 2 secondary hydrogens and 6 primary hydrogens
The rate of abstraction of seondary hydrogen = 3.9 X rate of abstraction of primary hydrogen
probability of formation of isopropyl chloride = 3.9 X 1 (relative rate X relative number of secondary hydrogens)
Probability of formation of n-propyl chloride = 1 X 3 (relative rate X relative number of primary hydrogens)
Total probability = 3.9
% of n-propyl chloride = 3 X 100 / 6.9 = 43.48 %