Answer:
Kp = \frac{P(NH_{3}) ^{4} P(O_{2}) ^{5}}{P(NO) ^{4} P(H_{2}O)^{6}}
Explanation:
First, we have to write the balanced chemical equation for the reaction. Nitrogen monoxide (NO) reacts with water (H₂O) to give ammonia (NH₃) and oxygen (O₂), according to the following:
NO(g) + H₂O(g) → NH₃(g) + O₂(g)
To balance the equation, we add the stoichiometric coefficients (4 for NH₃ and NO to balance N atoms, then 6 for H₂O to balance H atoms and then 5 for O₂ to balance O atoms):
4 NO(g) + 6 H₂O(g) → 4 NH₃(g) + 5 O₂(g)
All reactants and products are in the gaseous phase, so the equilibrium constant is expressed in terms of partial pressures (P) and is denoted as Kp. The Kp is expressed as the product of the reaction products (NH₃ and O₃) raised by their stoichiometric coefficients (4 and 5, respectively) divided into the product of the reaction reagents (NO and H₂O) raised by their stoichiometric coefficients (4 and 6, respectively). So, the pressure equilibrium constant expression is written as follows:

My sample would be 4000 years old because on my graph, I had about 9 Virtualium left at trial 4 so I am guessing that it would be 4000 years old.
Answer:
Equal volumes of SO2(g) and O2(g) at STP contain the same number of molecules
Explanation:
According to Avogadro Law,
Equal volume of all the gases at same temperature and pressure have equal number of molecules.
This law state that volume and number of moles of gas have direct relation.
When the amount of gas increases its volume will increase and when the amount of gas decreases its volume will decrease.
Mathematical relation:
V ∝ n
V/n = K
K is proportionality constant.
When number of moles change from n₁ to n₂ and volume from V₁ to V₂
expression will be,
V₁/n₁ = K , V₂/n₂ = K
V₁/n₁ = V₂/n₂
Glucose is carbohydrate and a simple sugar that is very important to the human body.
Energy is produced for the cells in the body through the process of metabolism which oxidizes glucose to water, carbon dioxide, and some nitrogen compounds.
The general chemical reaction equation for metabolism is:
C6H12O6 + 6O2 ---> 6CO2 + 6H2O