Answer:
B, H, E, G, C, D, A, F
Explanation:
The ones closest to the bottom are the oldest
I would say the first three. But I'm not 100% sure. I'm truly sorry if it's wrong
Answer:
![Ka=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OH]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OH%5D%7D)
Explanation:
Hello,
In this case, weak acids are characterized by the fact they do not dissociate completely, it means they do not divide into the conjugated base and acid at all, a percent only, which is quantified via equilibrium. In such a way, the chemical equation representing such incomplete dissociation is said to be:

Thus, we can write the law of mass action, which consider the equilibrium concentrations of all the involved species, which is also known as the acid dissociation constant which accounts for the capacity the acid has to yield hydronium ions:
![K=Ka=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OH]}](https://tex.z-dn.net/?f=K%3DKa%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OH%5D%7D)
Best regards.
Answer:
17,932.69 g/mol is the molecular weight of the substance.
Explanation:
Using Beer-Lambert's law :
Formula used :
where,
A = absorbance of solution = 1.04
c = concentration of solution =?
l = length of the cell = 1 cm
= molar absorptivity of this solution = 18,650 
Now put all the given values in the above formula, we get the molar absorptivity of this solution.
c = 

V = Volume of the solution in L
Molecular weight of the substance = x
V = 100 mL = 0.1 L
Mass of the substance = 100 mg = 0.1 g

x = 17,932.69 g/mol
17,932.69 g/mol is the molecular weight of the substance.