To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
P2 = P1 x V1 / V2
P2 = 2.0 x 1.5 / 3
<span>P2 = 1 atm</span>
It is a combustion reaction because when methane burns with oxyzen it produces carbon dioxide,water and heat and light.
Answer:
As with the hydrogen-ion concentration, the concentration of the hydroxide ion can be expressed logarithmically by the pOH. The pOH of a solution is the negative logarithm of the hydroxide-ion concentration. pOH=−log[OH−] The pH of a solution can be related to the pOH.
From the conversion of units:
1 cm^3 is equivalent to 1 mL
1 L is equivalent to 1000 mL
therefore,
to convert from liter to cm^3, we simply multiply by 1000.
Note that the multiplication will be done in the denominator.
Based on this:
density = (0.625 g/l) x (1g/1000 cm^3) = <span> 0.000625 g/cm^3
= 6.25 x 10^-4 g/cm^3</span>
Answer:
Kinetic energy decreases as temperature decreases.
Explanation:
From the description that the system at 80°C has longer arrows, or move faster than the system at 20°C, having shorter actors indicating a slower motion, we can conclude that the kinetic energy of a body depends on its temperature.
If the system at 80°C shows a greater kinetic energy (faster motion of particles) than the system at 20°C, it then implies that decreasing the temperature of the body decreases its kinetic energy.