1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shepuryov [24]
3 years ago
8

The best base unit for measuring the length of a carpet is a ____

Physics
2 answers:
sammy [17]3 years ago
5 0
The answer will be B) Meter
Vlada [557]3 years ago
4 0

Answer:

B) meter

Explanation:

This is because the meter is the SI unit of measurement of length. it is defined as the distance traveled by light in 1/(3 x 10⁸) sec in vacuum. it is neither a small unit of measurement of length nor a large unit of measurement of length. hence it is the most suitable unit  for measuring the length of the carpet.

You might be interested in
Please check my answers: The voltage across a 10-ohm resistor carrying 3 amps must be? I got 30 volts-v=?, I=3 amps, R= 16 ohm.
Igoryamba
1) 30 volts is correct
2) Rt = (4x6)/(4+6)=2.4 Ω
3) P = I^2 x R = 36 W

we use AC because it's easy to transmit via 3 phase on cables and easy to step up and down
3 0
3 years ago
What does Charles law state?​
RoseWind [281]

Answer:

Image result for what does charles law state

The physical principle known as Charles' law states that the volume of a gas equals a constant value multiplied by its temperature as measured on the Kelvin scale (zero Kelvin corresponds to -273.15 degrees Celsius).

Explanation:

5 0
3 years ago
Consider four point charges arranged in a square with sides of length L. Three of the point charges have charge q and one of the
nydimaria [60]

Answer:F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]

Explanation:

Given

Three charges of magnitude q is placed at three corners and fourth charge is placed at last corner with -q charge

Force due to the charge placed at diagonally opposite end on -q charge

F_1=\frac{kq(-q)}{(L\sqrt{2})^2}

where  L\sqrt{2}=Distance between the two charges

F_1=-\frac{kq^2}{2L^2}

negative sign indicates that it is an attraction force

Now remaining two charges will apply the same amount of force as they are equally spaced from -q charge

F_2=\frac{kq(-q)}{(L)^2}

The magnitude of force by both the  charge is same but at an angle of 90^{\circ}

thus combination of two forces at 2 and 3 will be

F'=\sqrt{2}\frac{kq^2}{2L^2}

Now it will add with force due to 1 charge

Thus net force will be

F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]

6 0
3 years ago
Having difficulty finding the PE and KE for these values no mass is given. Does anyone know to go solve these?
Alexandra [31]

11) 1.04\cdot 10^7 J

12) 1.04\cdot 10^7 J

13) 50.0 m/s

14) 41.6 m/s

Explanation:

11)

The potential energy of an object is the energy possessed by the object due to its position relative to the ground. It is given by

PE=mgh

where

m is the mass of the object

g is the acceleration due to gravity

h is the height relative to the ground

Here in this problem, when the train is at the top, we have:

m = 8325 kg (mass of the train + riders)

g=9.8 m/s^2 (acceleration due to gravity)

h = 127 m (height of the train at the top)

Substituting,

PE=(8325)(9.8)(127)=1.04\cdot 10^7 J

12)

According to the law of conservation of energy, the total mechanical energy of the train must be conserved (in absence of friction). So we can write:

KE_t + PE_t = KE_b + PE_b

where

KE_t is the kinetic energy at the top

PE_t is the potential energy at the top

KE_b is the kinetic energy at the bottom

PE_b is the potential energy at the bottom

The kinetic energy is the energy due to motion; since the train is at rest at the top, we have

KE_t=0

Also, at the bottom the height is zero, so the potential energy is zero

PE_b=0

Therefore, we find:

KE_b=PE_t=1.04\cdot 10^7 J

13)

The kinetic energy of an object is the energy of the object due to its motion. Mathematically, it is given by

KE=\frac{1}{2}mv^2

where

m is the mass of the object

v is the speed of the object

From question 12), we know that the kinetic energy of the train at the bottom is

KE=1.04\cdot 10^7 J

We also know that the mass is

m = 8325 kg

Therefore, we can calculate the speed of the train at the bottom:

v=\sqrt{\frac{2KE}{m}}=\sqrt{\frac{2(1.04\cdot 10^7)}{8325}}=50.0 m/s

14)

At the top of the second hill, the total mechanical energy of the train is still conserved.

Therefore, we can write again:

KE_1 + PE_1 = KE_2 + PE_2

where

KE_1 is the kinetic energy at the top of the 1st hill

PE_1 is the potential energy at the top of the 1st hill

KE_2 is the kinetic energy at the top of the 2nd hill

PE_2 is the potential energy at the top of the 2nd hill

From the previous questions, we know that

KE_1=0

and

PE_1=1.04\cdot 10^7 J

The height of the second hill is

h = 39 m

So we can also find the potential energy at the second hill:

PE_2=mgh=(8325)(9.8)(39)=3.2\cdot 10^6 J

So, the kinetic energy at the second hill is

KE_2=PE_1-PE_2=1.04\cdot 10^7 - 3.2\cdot 10^6 =7.2\cdot 10^6 J

And so, the speed is

v=\sqrt{\frac{2KE_2}{m}}=\sqrt{\frac{2(7.2\cdot 10^6)}{8325}}=41.6 m/s

4 0
3 years ago
A wave has a frequency of 46 Hz and a wavelength of 1.7 meters. What is the speed of the wave?
olga55 [171]

Answer:0.588..

Explanation:

7 0
3 years ago
Other questions:
  • What do wolves do to make hunting easier? /sharpen claws/ /hibernate/ /have distinct call/ /hunt in packs/ ASAP UNIT TEST
    9·2 answers
  • According to the Big Bang theory, the universe was once very __________ and is now __________.
    13·2 answers
  • Calculate 8 ∙ 10-4 divided by 2 ∙ 102. (Box after the "10" in answer is for the exponent.).
    11·2 answers
  • What organelle is found in all animal cells and some plant cells
    8·1 answer
  • The Bugatti Veyron requires 2.40 s to accelerate from 0 to 60.0 mi/h. Calculate the distance that the car would travel in the ti
    11·1 answer
  • Need help on number 5 and 6
    14·2 answers
  • A 5kg fish swimming at 1 m/s swallows a 1 kg fish at rest. What is the final momentum of the big fish with the small fish in its
    9·1 answer
  • ANYONE KNOW NUMBER 1?
    8·1 answer
  • Why do we break up angled forces into components? How does that help us solve force problems?
    14·1 answer
  • A scientist runs an electric current along a wire. A magnetic compass is placed near the wire. The scientist observes that whene
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!