Answer:
A. topsoil the answer
Explanation:
I think its a correct answer
Answer:
The resulting pressure is 3 times the initial pressure.
Explanation:
The equation of state for ideal gases is described below:
(1)
Where:
- Pressure.
- Volume.
- Molar quantity, in moles.
- Ideal gas constant.
- Temperature.
Given that ideal gas is compressed isothermally, this is, temperature remains constant, pressure is increased and volume is decreased, then we can simplify (1) into the following relationship:
(2)
If we know that
, then the resulting pressure of the system is:


The resulting pressure is 3 times the initial pressure.
Answer:
29.96m/s
Explanation:
Given parameters:
Initial speed = 25.5m/s
Acceleration = 1.94m/s²
Time = 2.3s
Unknown:
Final speed of the car = ?
Solution:
To solve this problem, we are going to apply the right motion equation:
v = u + at
v is the final speed
u is the initial speed
a is the acceleration
t is the time taken
Now insert the parameters and solve;
v = 25.5 + (1.94 x 2.3) = 29.96m/s
Answer: the airy pattern can only arise from wave propagation
Explanation:if particles went in straight lines through a slit, they would progate linearly and not interfere. The airy pattern arises from diffraction as waves interfere, producing peaks (constructive interference where peaks of waves from each slit coincide) and troughs (destructive interference where peaks and troughs of waves from each slit cancel out). If intensity rather than field is measured nodes occur where 0 values line up instead of troughs
The formula for both is v(t) = v0 + a*t
b) v(8) = 0 + 6m/s^2 *8s = 48 m/s
now we know the beginning (2) and end speed (14), but not the time:
c) 14 = 2 + 1.5*t => t = (14-2)/1.5 = 8 seconds