Most likely it would be C not completely sure
Answer: 211.059 m
Explanation:
We have the following data:
The angle at which the ball leaves the bat
The initial velocity of the ball
The acceleration due gravity
We need to find how far (horizontally) the ball travels in the air: 
Firstly we need to know this velocity has two components:
<u>Horizontally:</u>
(1)
(2)
<u>Vertically:</u>
(3)
(4)
On the other hand, when we talk about parabolic movement (as in this situation) the ball reaches its maximum height just in the middle of this parabola, when
and the time
is half the time it takes the complete parabolic path.
So, if we use the following equation, we will find
:
(5)
Isolating
:
(6)
(7)
(8)
Now that we have the time it takes to the ball to travel half of is path, we can find the total time
it takes the complete parabolic path, which is twice
:
(9)
With this result in mind, we can finally calculate how far the ball travels in the air:
(10)
Substituting (2) and (9) in (10):
(11)
Finally:
Explanation:
The answer is:
A squirrel runs up the trunk of a tree.
To solve this problem it is necessary to apply the concepts related to the Centrifugal Force and the Gravitational Force. Since there is balance on the body these two Forces will be equal, mathematically they can be expressed as


Where,
m = Mass
G =Gravitational Universal Constant
M = Mass of the Planet
r = Distance/Radius
Re-arrange to find the velocity we have,

At the same time we know that the period is equivalent in terms of the linear velocity to,


If our values are that the radius of mars is 3400 km and the distance above the planet is 100km more, i.e, 3500km we have,



Replacing we have,



Therefore the correct answer is C.
Answer:
The units (km/h) tell you how to do this! 200km/3h = 66.66666666…. BUT technically you only have ONE significant digit: 3 so 66.666… rounded to ONE digit is 70km/h but that is probably not important in this intro class so V = 66.67 or 67 km/h