Answer:
R = 1,746 Ω
Explanation:
The power dissipated in the circuit is
P = V I = V² / R
Let's find the current
R = V² / P
Let's calculate
R = 13²/81
R = 2,096 Ω
This is total resistance
R_total = R + r
R = R_total - r
R = 2,096 -0,350
R = 1,746 Ω
Technological advances clearly.
Theories change due to other peoples view on the matter and how they experiment with it, but Technology advancements are the greatest factor of all. I mean seriously, we wouldn't know of cells before the microscope and when they first invented it, it advanced further and now we can see things on a whole deeper lever.
260 joules is hopefully right.
Nuclear reaction you are literally splitting an atom and in a chemical reaction you are not
Answer:
Explanation:
We shall apply conservation of momentum law in vector form to solve the problem .
Initial momentum = 0
momentum of 12 g piece
= .012 x 37 i since it moves along x axis .
= .444 i
momentum of 22 g
= .022 x 34 j
= .748 j
Let momentum of third piece = p
total momentum
= p + .444 i + .748 j
so
applying conservation law of momentum
p + .444 i + .748 j = 0
p = - .444 i - .748 j
magnitude of p
= √ ( .444² + .748² )
= .87 kg m /s
mass of third piece = 58 - ( 12 + 22 )
= 24 g = .024 kg
if v be its velocity
.024 v = .87
v = 36.25 m / s .