There are many factors which contributes as to how a machine will be processing the input energy and convert it to output energy. Even with identical mechanism, these factors will have major effect on the output. Some factors are deflection, friction and wear. Some system maybe exposed to poor lubrication than the other which'll produce more friction and wear thus lower mechanical advantage.
sorry its quite messy haha
Answer:
a) - 72.5°c
b) pressure = 3625.13 Pa
c) density = 0.063 kg/m^3
d) it is a subsonic aircraft
Explanation:
a) Determine Temperature
Temperature at 19.5 km ( 19500 m )
T = -131 + ( 0.003 * altitude in meters )
= -131 + ( 0.003 * 19500 ) = - 72.5°c
b) Determine pressure and density at 19.5 km altitude
Given :
Po (atmospheric pressure at sea level ) = 101kpa
R ( gas constant of air ) = 0.287 KJ/Kgk
T = -72.5°c ≈ 200.5 k
pressure = 3625.13 Pa
hence density = 0.063 kg/m^3
attached below is the remaining part of the solution
C) determine if the aircraft is subsonic or super sonic
Velocity ( v ) =
=
= 283.8 m/s
hence it is a subsonic aircraft
Answer:
v= 1.71 m/s
Explanation:
Given that
Distance between two successive crests = 4.0 m
λ = 4 m
T= 7 sec
T is the time between 3 waves.
3 waves = 7 sec
1 wave = 7 /3 sec
So t= 7/3 s
We know that frequency f
f= 1/t= 3/7 Hz
Lets take speed of the wave is v
v= f λ
f=frequency
λ=wavelength
v= 3/7 x 4 = 12 /7
v= 1.71 m/s
As stated in the statement, we will apply energy conservation to solve this problem.
From this concept we know that the kinetic energy gained is equivalent to the potential energy lost and vice versa. Mathematically said equilibrium can be expressed as


Where,
m = mass
= initial and final velocity
g = Gravity
h = height
As the mass is tHe same and the final height is zero we have that the expression is now:





