1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zarrin [17]
3 years ago
15

A heating system must maintain the interior of a building at 20°C during a period when the outside air temperature is 5°C and th

e heat transfer from the building through its roof and walls is 3 × 106 kJ. For this duty heat pumps are under consideration that would operate between the dwelling and
a. the ground at 15°C.
b. a pond at 10°C.
c. the outside air at 5°C.
Engineering
1 answer:
Anettt [7]3 years ago
3 0

Answer:

a. W = 51,194.54 kJ

b. W = 102,390 kJ

c. W = 153,585 kJ

Explanation:

(COP)_{HP} =\frac{Desired-effectx}{Work-done}= \frac{Q_{1} }{W} \\\\(COP)_{HP} =(COP)_{Ideal}\\\\\frac{Q1}{W} =\frac{T_{1} }{T_{1} -T_{2} }

W=Q_{1} \frac{T_{1}-T_{2}  }{T_{1} }

a. the ground at 15°C.

T_{1}=20°C = 273 K + 20 = 293 K

T_{2}=15°C = 273 K + 15 = 288 K

Q_{1}=3x10^{6} kJ

W=3x10^{6} kJ \frac{293 K-288 K}{293 K}=3x10^{6} kJ \frac{5 K}{293 K}=3x10^{6} kJ x 0.017065}

W = 0.051195x10^{6} kJ

W = 51,194.54 kJ

b. a pond at 10°C.

T_{2}=10°C = 273 K + 10 = 283 K

W=3x10^{6} kJ \frac{293 K-283 K}{293 K}=3x10^{6} kJ \frac{10 K}{293 K}=3x10^{6} kJ x 0.034130}

W = 0.102390x10^{6} kJ

W = 102,390 kJ

c. the outside air at 5°C.

T_{2}=5°C = 273 K + 5 = 278 K

W=3x10^{6} kJ \frac{293 K-278 K}{293 K}=3x10^{6} kJ \frac{15 K}{293 K}=3x10^{6} kJ x 0.051195}

W = 0.153585x10^{6} kJ

W = 153,585 kJ

Hope this helps!

You might be interested in
True or false? Engineering degree programs and engineering technology degree programs have a different requirements
sergey [27]
That’s true brother
4 0
3 years ago
What causes the charging system warning lamp to go out when the engine starts up?
Flura [38]
B is the answer I believe so
7 0
3 years ago
Air enters a tank through an area of 0.2 ft2 with a velocity of 15 ft/s and a density of 0.03 slug/ft3. Air leaves with a veloci
Mademuasel [1]

Answer:

please find attached.

Explanation:

4 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
Water is flowing into the top of an open cylindrical tank (which has a diameter D) at a volume flow rate of Qi and the water flo
deff fn [24]

Answer:

Z = 3 + 0.23t

The water level is rising

Explanation:

Please see attachment for the equation

8 0
3 years ago
Read 2 more answers
Other questions:
  • There is a proposal in Brooklyn to construct a new mid-rise apartment building on a vacant lot at the intersection of Avenue A a
    8·1 answer
  • Carbon dioxide flows at a rate of 1.5 ft3 /s from a 3-in. pipe in which the pressure and temperature are 20 psi (gage) and 120 °
    8·1 answer
  • When we utilize a visualization on paper/screen, that visualization is limited to exploring: Group of answer choices Relationshi
    9·1 answer
  • The news media often report an earthquake's magnitude on the Richter scale. Which of the following items are characteristics of
    14·1 answer
  • Refrigerant 134a enters a horizontal pipe operating at steady state at 40oC, 300 kPaand a velocity of 40 m/s. At the exit, the t
    13·1 answer
  • A 225 MPa conducted in which the mean stress was 50 MPa and the stress amplitude was (a) Compute the maximum and (b) Compute the
    13·1 answer
  • 1. What are the usual symptoms of brake issues?​
    15·1 answer
  • Two engineers are discussing the various merits of hydroelectricity. Engineer A says that tidal barrage systems can generate ele
    6·1 answer
  • A tiger cub has a pattern of stripes on it for that is similar to that of his parents where are the instructions stored that pro
    8·1 answer
  • 9
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!