Answer:
The Euler buckling load of a 160-cm-long column will be 1.33 times the Euler buckling load of an equivalent 120-cm-long column.
Explanation:
160 - 120 = 40
120 = 100
40 = X
40 x 100 / 120 = X
4000 / 120 = X
33.333 = X
120 = 100
160 = X
160 x 100 /120 = X
16000 / 120 = X
133.333 = X
Answer:
(b)False
Explanation:
Given:
Prandtl number(Pr) =1000.
We know that 
Where
is the molecular diffusivity of momentum
is the molecular diffusivity of heat.
Prandtl number(Pr) can also be defined as

Where
is the hydrodynamic boundary layer thickness and
is the thermal boundary layer thickness.
So if Pr>1 then hydrodynamic boundary layer thickness will be greater than thermal boundary layer thickness.
In given question Pr>1 so hydrodynamic boundary layer thickness will be greater than thermal boundary layer thickness.
So hydrodynamic layer will be thicker than the thermal boundary layer.
Answer:
<em> - 14.943 W/m^2K ( negative sign indicates cooling ) </em>
Explanation:
Given data:
Area of FPC = 4 m^2
temp of water = 60°C
flow rate = 0.06 l/s
ambient temperature = 8°C
exit temperature = 49°C
<u>Calculate the overall heat loss coefficient </u>
Note : heat lost by water = heat loss through convection
m*Cp*dT = h*A * ( T - To )
∴ dT / T - To = h*A / m*Cp ( integrate the relation )
In (
) = h* 4 / ( 0.06 * 10^-3 * 1000 * 4180 )
In ( 41 / 52 ) = 0.0159*h
hence h = - 0.2376 / 0.0159
= - 14.943 W/m^2K ( heat loss coefficient )
Answer:
A pitot tube is used to measure fluid flow in engineering