1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Makovka662 [10]
3 years ago
8

What the answer fast

Engineering
1 answer:
anygoal [31]3 years ago
7 0
Viscosity isT=u(U/y) where T is shear stress & u is velocity and y is thr length
The answer is =2.57
You might be interested in
One cylinder in the diesel engine of a truck has an initial volume of 650 cm3 . Air is admitted to the cylinder at 35 ∘C and a p
kupik [55]

Answer:

1) the final temperature is T2 = 876.76°C

2) the final volume is V2 = 24.14 cm³

Explanation:

We can model the gas behaviour as an ideal gas, then

P*V=n*R*T

since the gas is rapidly compressed and the thermal conductivity of a gas is low a we can assume that there is an insignificant heat transfer in that time, therefore for adiabatic conditions:

P*V^k = constant = C, k= adiabatic coefficient for air = 1.4

then the work will be

W = ∫ P dV = ∫ C*V^(-k) dV = C*[((V2^(-k+1)-V1^(-k+1)]/( -k +1) = (P2*V2 - P1*V1)/(1-k)= nR(T2-T1)/(1-k) = (P1*V1/T1)*(T2-T1)/(1-k)

W = (P1*V1/T1)*(T2-T1)/(1-k)  

T2 = (1-k)W* T1/(P1*V1) +T1

replacing values (W=-450 J since it is the work done by the gas to the piston)

T2 = (1-1.4)*(-450J) *308K/(101325 Pa*650*10^-6 m³) + 308 K= 1149.76 K = 876.76°C

the final volume is

TV^(k-1)= constant

therefore

T2/T1= (V2/V1)^(1-k)

V2 = V1* (T2/T1)^(1/(1-k)) = 650 cm³ * (1149.76K/308K)^(1/(1-1.4)) = 24.14 cm³

3 0
3 years ago
7.35 and 7.36 For the beam and loading shown, (a) draw the shear and bending-moment diagrams, (b) determine the maximum absolute
Crank

Maximum absolute values of the shear = 28 KN

Maximum absolute values of bending moment = 5.7 KN.m

<h3>How to draw Shear Force and Bending Moment Diagram?</h3>

A) We can see the beam loaded in the first image attached.

For the shear diagram, let us calculate the shear from point load to point load.

From A to C, summing vertical to zero gives; ∑fy = 0: -20 - V = 0

V = -20 KN

From C to D, summing vertical to zero gives; ∑fy = 0: -20 + 48 - V = 0

V = 28 KN

From D to E, summing vertical to zero gives; ∑fy = 0: -20 + 48 - 20 - V = 0

V = 8 KN

From E to B, summing vertical to zero gives; ∑fy = 0: -20 + 48 - 20 - 20 - V = 0

V = -12 KN

For the bending moment diagram, let us calculate the bending moment from point load to point load.

At point A, the bending moment would be zero. Thus, M_A = 0 KN.m

At point C, taking moment about point C and equating to zero gives;

M_C = 0. Thus; 20(0.225) + M = 0

M = -4.5 KN.m

At point D, taking moment about point D and equating to zero gives;

M_D = 0. Thus; 20(0.525) - 48(0.3) + M = 0

M = 3.9 KN.m

At point E, taking moment about point E and equating to zero gives;

M_D = 0. Thus; 20(0.75) - 48(0.525) + 20(0.225) + M = 0

M = 5.7 KN.m

At point B, taking moment about point E and equating to zero gives;

M_E = 0. Thus; 20(1.05) - 48(0.825) + 20(0.525) + (20 * 0.3) + M = 0

M = 2.1 KN.m

2) From the attached diagrams, we can deduce that;

Maximum absolute values of the shear = 28 KN

Maximum absolute values of bending moment = 5.7 KN.m

Read more about shear force & bending moment diagram at; brainly.com/question/14834487

#SPJ1

4 0
2 years ago
PythonA group of statisticians at a local college has asked you to create a set of functionsthat compute the median and mode of
skelet666 [1.2K]

Answer:

  1. def median(l):
  2.    if(len(l) == 0):
  3.       return 0
  4.    else:
  5.        l.sort()
  6.        if(len(l)%2 == 0):
  7.            index = int(len(l)/2)
  8.            mid = (l[index-1] + l[index]) / 2
  9.        else:
  10.            mid = l[len(l)//2]  
  11.        return mid  
  12. def mode(l):
  13.    if(len(l)==0):
  14.        return 0
  15.    mode = max(set(l), key=l.count)
  16.    return mode  
  17. def mean(l):
  18.    if(len(l)==0):
  19.        return 0
  20.    sum = 0
  21.    for x in l:
  22.        sum += x
  23.    mean = sum / len(l)
  24.    return mean
  25. lst = [5, 7, 10, 11, 12, 12, 13, 15, 25, 30, 45, 61]
  26. print(mean(lst))
  27. print(median(lst))
  28. print(mode(lst))

Explanation:

Firstly, we create a median function (Line 1). This function will check if the the length of list is zero and also if it is an even number. If the length is zero (empty list), it return zero (Line 2-3). If it is an even number, it will calculate the median by summing up two middle index values and divide them by two (Line 6-8). Or if the length is an odd, it will simply take the middle index value and return it as output (Line 9-10).

In mode function, after checking the length of list, we use the max function to estimate the maximum count of the item in list (Line 17) and use it as mode.

In mean function,  after checking the length of list,  we create a sum variable and then use a loop to add the item of list to sum (Line 23-25). After the loop, divide sum by the length of list to get the mean (Line 26).

In the main program, we test the three functions using a sample list and we shall get

20.5

12.5

12

3 0
3 years ago
La probabilidad de que un nuevo producto tenga éxito es de 0.85. Si se eligen 10 personas al azar y se les pregunta si compraría
liq [111]

Answer:

La probabilidad pedida es 0.820196

Explanation:

Sabemos que la probabilidad de que un nuevo producto tenga éxito es de 0.85. Sabemos también que se eligen 10 personas al azar y se les pregunta si comprarían el nuevo producto. Para responder a la pregunta, primero definiremos la siguiente variable aleatoria :

X: '' Número de personas que adquirirán el nuevo producto de 10 personas a las que se les preguntó ''

Ahora bien, si suponemos que la probabilidad de que el nuevo producto tenga éxito se mantiene constante (p=0.85) y además suponemos que hay independencia entre cada una de las personas al azar a las que se les preguntó ⇒ Podemos modelar a X como una variable aleatoria Binomial. Esto se escribe :

X ~ Bi(n,p) en donde ''n'' es el número de personas entrevistadas y ''p'' es la probabilidad de éxito (una persona adquiriendo el producto) en cada caso.

Utilizando los datos ⇒ X ~ Bi(10,0.85)

La función de probabilidad de la variable aleatoria binomial es :

p_{X}(x)=P(X=x)=\left(\begin{array}{c}n&x\end{array}\right)p^{x}(1-p)^{n-x}    con x=0,1,2,...,n

Si reemplazamos los datos de la pregunta en la función de probabilidad obtenemos :

P(X=x)=\left(\begin{array}{c}10&x\end{array}\right)(0.85)^{x}(0.15)^{10-x} con x=0,1,2,...,10

Nos piden la probabilidad de que por lo menos 8 personas adquieran el nuevo producto, esto es :

P(X\geq 8)=P(X=8)+P(X=9)+P(X=10)

Calculando P(X=8), P(X=9) y P(X=10) por separado y sumando, obtenemos que P(X\geq 8)=0.820196

7 0
3 years ago
10–25. The 45° strain rosette is mounted on the surface of a shell. The following readings are obtained for each gage: ε a = −20
vazorg [7]

Answer:

The answer is 380.32×10^-6

Refer below for the explanation.

Explanation:

Refer to the picture for brief explanation.

7 0
3 years ago
Other questions:
  • The popularity of orange juice, especially as a breakfast drink, makes it an important factor in the economy of orange-growing r
    14·1 answer
  • Water flovs in a pipe of diameter 150 mm. The velocity of the water is measured at a certain spot which reflects the average flo
    13·1 answer
  • Give two methods on how powder is produced in powder metallurgy.
    5·2 answers
  • The basic concept of feedback control is that an error must exist before some corrective action can be made?
    12·1 answer
  • A can of engine oil with a length of 150 mm and a diameter of 100 mm is placed vertically in the trunk of a car. On a hot summer
    8·1 answer
  • What is the value of the energy (in Joules) stored by the mobile phone battery (capacity of 1.8 Ah), if it is rated at 3.7 V
    15·2 answers
  • Calculate total hole mobility if the hole mobility due to lattice scattering is 50 cm2 /Vsec and the hole mobility due to ionize
    5·2 answers
  • (100 POINTS) {BRIANLIEST} PLEASE HELP ME
    5·1 answer
  • PROBLEM IN PICTURE HELP ME DEAR GODDDDDD UGHHH NONONO I HAVE 2 MINUTES TO FINISH THIS ❕❗️❕❗️❗️❕❕❕❕❗️❕❕❗️❕❗️❗️❗️❕‼️‼️‼️‼️❗️‼️❗️
    11·2 answers
  • Some_____
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!